Journal of the American Mathematical Society. Volume 11, Number 3, 1998
Journal of the American Mathematical Society Contents of Volume 11, Number 3 The Dolbeault complex in infinite dimensions I László Lempert J. Amer. Math. Soc. 11 (1998), 485-520. Decomposing Borel sets and functions and the structure of Baire class 1 functions Slawomi...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
American Mathematical Society
2009
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/75 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Tóm tắt: | Journal of the American Mathematical Society
Contents of Volume 11, Number 3
The Dolbeault complex in infinite dimensions I
László Lempert
J. Amer. Math. Soc. 11 (1998), 485-520.
Decomposing Borel sets and functions and the structure of Baire class 1 functions
Slawomir Solecki
J. Amer. Math. Soc. 11 (1998), 521-550.
Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras
Peter Littelmann
J. Amer. Math. Soc. 11 (1998), 551-567.
Relative Bogomolov's inequality and the cone of positive divisors on the moduli space of stable curves
Atsushi Moriwaki
J. Amer. Math. Soc. 11 (1998), 569-600.
On the affine heat equation for non-convex curves
Sigurd Angenent; Guillermo Sapiro; Allen Tannenbaum
J. Amer. Math. Soc. 11 (1998), 601-634.
L-series with nonzero central critical value
Kevin James
J. Amer. Math. Soc. 11 (1998), 635-641.
A topological characterisation of hyperbolic groups
Brian H. Bowditch
J. Amer. Math. Soc. 11 (1998), 643-667.
On an $n$-manifold in $\mathbf{C}^n$ near an elliptic complex tangent
Xiaojun Huang
J. Amer. Math. Soc. 11 (1998), 669-692.
A new proof of Federer's structure theorem for $k$-dimensional subsets of $\mathbf{R}^N$
Brian White
J. Amer. Math. Soc. 11 (1998), 693-701.
Local Rankin-Selberg convolutions for $\mathrm{GL}_{n}$: Explicit conductor formula
Colin J. Bushnell; Guy M. Henniart; Philip C. Kutzko
J. Amer. Math. Soc. 11 (1998), 703-730.
Grothendieck's theorem on non-abelian $H^2$ and local-global principles
Yuval Z. Flicker; Claus Scheiderer; R. Sujatha
J. Amer. Math. Soc. 11 (1998), 731-750. |
---|