Data mining methods and models

Provides an introduction into data mining methods and models, including association rules, clustering, K-nearest neighbor, statistical inference, neural networks, linear and logistic regression, and multivariate analysis Presents a unified approach based on CRISP methodology, which involves Strategi...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Larose, Daniel T.
Natura: Libro
Lingua:Undetermined
Pubblicazione: Hoboken, NJ Wiley-Interscience 2006
Soggetti:
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Thư viện lưu trữ: Trung tâm Học liệu Trường Đại học Cần Thơ
Descrizione
Riassunto:Provides an introduction into data mining methods and models, including association rules, clustering, K-nearest neighbor, statistical inference, neural networks, linear and logistic regression, and multivariate analysis Presents a unified approach based on CRISP methodology, which involves Strategic Risk Assessment based on Organizational Modelling. A companion Web site features downloads of large data sets used in the chapter projects, with a discussion area and message board, where readers are encouraged to exchange ideas