Data mining and statistics for decision making /

"Data Mining is a practical guide to understanding and implementing data mining techniques, featuring traditional methods such as cluster analysis, factor analysis, linear regression, PLS regression and generalised linear models"--

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Tuffery, Stéphane.
Định dạng: Sách giấy
Được phát hành: Chichester, West Sussex ; Hoboken, NJ. : Wiley, 2011.
Loạt:Wiley series in computational statistics.
Những chủ đề:
Truy cập trực tuyến:Cover image
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
LEADER 02660nam a2200409 4500
001 DLU110126254
005 ##20111007
008 ##100920s2011 enka b 001 0 eng
010 # # |a  2010039789 
020 # # |a 9780470688298 (hardback) 
035 # # |a (OCoLC)ocn669160723 
040 # # |a DLC  |c DLC  |d YDX  |d YDXCP  |d IUL  |d CDX  |d DLC 
042 # # |a pcc 
082 # # |a 006.312  |b TU-S 
100 # # |a Tuffery, Stéphane. 
245 # # |a Data mining and statistics for decision making /  |c Stéphane Tufféry. 
260 # # |a Chichester, West Sussex ;  |a Hoboken, NJ. :  |b Wiley,  |c 2011. 
300 # # |a xxiv, 689 p. :  |b ill. ;  |c 25 cm. 
504 # # |a Includes bibliographical references and index. 
505 # # |a Overview of data mining -- The development of a data mining study -- Data exploration and preparation -- Using commercial data -- Statistical and data mining software -- An outline of data mining methods -- Factor analysis -- Neural networks -- Cluster analysis -- Asociation analysis -- Classification and prediction methods -- An application of data mining: scoring -- Factors for success in a data mining project -- Text mining -- Web mining -- Appendix A: Elements of statistics -- Appendix B: further reading. 
520 # # |a "Data Mining is a practical guide to understanding and implementing data mining techniques, featuring traditional methods such as cluster analysis, factor analysis, linear regression, PLS regression and generalised linear models"--  |c Provided by publisher. 
520 # # |a "This practical guide to understanding and implementing data mining techniques discusses traditional methods--cluster analysis, factor analysis, linear regression, PLS regression, and generalized linear models--and recent methods--bagging and boosting, decision trees, neural networks, support vector machines, and genetic algorithm. The book focuses largely on credit scoring, one of the most common applications of predictive techniques, but also includes other descriptive techniques, such as customer segmentation. It also covers data mining with R, provides a comparison of SAS and SPSS, and includes an appendix presenting the necessary statistical background"--  |c Provided by publisher. 
650 # # |a Data mining. 
650 # # |a Statistical decision. 
830 # # |a Wiley series in computational statistics. 
856 # # |3 Cover image  |u http://catalogimages.wiley.com/images/db/jimages/9780470688298.jpg 
923 # # |a 13/2011 
991 # # |a GT 
992 # # |a 2288947 
994 # # |a DLU 
900 # # |a True 
911 # # |a Đào Thị Thu Huyền 
925 # # |a G 
926 # # |a A 
927 # # |a SH 
980 # # |a Thư viện Trường Đại học Đà Lạt