Data mining : practical machine learning tools and techniques /

Сохранить в:
Библиографические подробности
Главный автор: Witten, I. H.
Другие авторы: Frank, Eibe., Hall, Mark A.
Формат: Sách giấy
Опубликовано: Burlington, MA : Morgan Kaufmann, c2011.
Редактирование:3rd ed.
Серии:Morgan Kaufmann series in data management systems.
Предметы:
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Оглавление:
  • Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
  • Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
  • Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
  • 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.