Deep learning

Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Goodfellow, Ian
Weitere Verfasser: Bengio, Yoshua
Format: Buch
Sprache:Undetermined
Veröffentlicht: Cambridge, Massachusetts The MIT Press [2016]
Schlagworte:
Online Zugang:http://lrc.tdmu.edu.vn/opac/search/detail.asp?aID=2&ID=41713
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Thư viện lưu trữ: Trung tâm Học liệu Trường Đại học Thủ Dầu Một
Beschreibung
Zusammenfassung:Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
Beschreibung:xxii, 775 pages