Deep learning
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolution...
Đã lưu trong:
| 主要作者: | |
|---|---|
| 其他作者: | |
| 格式: | 圖書 |
| 語言: | Undetermined |
| 出版: |
Cambridge, Massachusetts
The MIT Press
[2016]
|
| 主題: | |
| 在線閱讀: | http://lrc.tdmu.edu.vn/opac/search/detail.asp?aID=2&ID=41713 |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
| Thư viện lưu trữ: | Trung tâm Học liệu Trường Đại học Thủ Dầu Một |
|---|
| 總結: | Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. |
|---|---|
| 實物描述: | xxii, 775 pages |