Improving Hotel Customer Sentiment Prediction by Fusing Review Titles and Contents
Intelligent Information and Database Systems (ACIIDS 2023); Lecture Notes in Computer Science (LNAI,volume 13996); pp: 323-335.
Đã lưu trong:
| Những tác giả chính: | Tran, Xuan Thang, Dang, Dai Tho, Nguyen, Ngoc Thanh |
|---|---|
| Formáid: | Bài viết |
| Teanga: | English |
| Foilsithe: |
Springer Nature
2024
|
| Rochtain Ar Líne: | https://doi.org/10.1007/978-981-99-5837-5_27 https://elib.vku.udn.vn/handle/123456789/3998 |
| Clibeanna: |
Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
|
| Thư viện lưu trữ: | Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng |
|---|
Míreanna Comhchosúla
-
Predicting Customer Sentiment with Vietnamese Hotel Services by LSTM Model
le: Bui, Khanh Linh, et al.
Foilsithe: (2023) -
Sentiment Analysis of Airline Customer Reviews in Vietnamese Language Using Deep Learning
le: Huynh, Cong Phap, et al.
Foilsithe: (2024) -
Exploring the customer experience of Vietnam Airlines via sentiment analysis
le: Ton, Nguyen Trong Hien
Foilsithe: (2025) -
Enhancing the efficiency of sentiment analysis for Vietnamese service reviews
le: Mai, Nguyen Xuan Thao, et al.
Foilsithe: (2025) -
Can integrated titles improve the viewing experience? :
le: Fox, Wendy
Foilsithe: (2018)