A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone

Cyclic voltammetry (CV) in a pH 7.0 phosphate buffer solution containing aspartame (ASP) and caffeic acid (CAF) was studied. In sharp contrast to untreated electrodes, two distinct redox peaks were observed at preanodized screen-printed carbon electrodes (SPCE*) due to the formation of a homopolymer...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Lê, Vũ Trâm Anh, Su, Ya-Ling, Cheng, Shu-Hua
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Elsevier 2022
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/1544
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-1544
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Aspartame
Electrochemical polymerization
Caffeic acid
Differential pulse voltammetry
Artificial sweeteners
spellingShingle Aspartame
Electrochemical polymerization
Caffeic acid
Differential pulse voltammetry
Artificial sweeteners
Lê, Vũ Trâm Anh
Su, Ya-Ling
Cheng, Shu-Hua
A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
description Cyclic voltammetry (CV) in a pH 7.0 phosphate buffer solution containing aspartame (ASP) and caffeic acid (CAF) was studied. In sharp contrast to untreated electrodes, two distinct redox peaks were observed at preanodized screen-printed carbon electrodes (SPCE*) due to the formation of a homopolymer poly(CAF) and a copolymer poly(CAF-ASP). The characteristics of the polymer film-modified electrodes were well-characterized by atomic force microscopy (AFM), photoelectron spectroscopy (XPS) and the water contact angle technique. Electrochemically induced polymerization mechanisms were discussed. Current responses from poly(CAF-ASP) were employed for ASP determination, and a linear dynamic range from 0.05 µM to 10 μM was obtained using differential pulse voltammetry (DPV). The detection limit (S/N = 3) was 0.0076 µM, the quantitation limit (S/N=10) was 0.0256 µM and the sensitivity was 12.067 μA μM-1. Common additives in soft drinks do not interfere with the ASP analysis. The proposed assay and a reference high-performance liquid chromatography (HPLC) were applied for the determination of ASP in two soft drinks using the standard addition method, and satisfactory recoveries and good agreement were obtained.
format Journal article
author Lê, Vũ Trâm Anh
Su, Ya-Ling
Cheng, Shu-Hua
author_facet Lê, Vũ Trâm Anh
Su, Ya-Ling
Cheng, Shu-Hua
author_sort Lê, Vũ Trâm Anh
title A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
title_short A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
title_full A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
title_fullStr A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
title_full_unstemmed A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
title_sort novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone
publisher Elsevier
publishDate 2022
url http://scholar.dlu.edu.vn/handle/123456789/1544
_version_ 1768306080623886336
spelling oai:scholar.dlu.edu.vn:123456789-15442022-10-14T14:38:43Z A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone Lê, Vũ Trâm Anh Su, Ya-Ling Cheng, Shu-Hua Aspartame Electrochemical polymerization Caffeic acid Differential pulse voltammetry Artificial sweeteners Cyclic voltammetry (CV) in a pH 7.0 phosphate buffer solution containing aspartame (ASP) and caffeic acid (CAF) was studied. In sharp contrast to untreated electrodes, two distinct redox peaks were observed at preanodized screen-printed carbon electrodes (SPCE*) due to the formation of a homopolymer poly(CAF) and a copolymer poly(CAF-ASP). The characteristics of the polymer film-modified electrodes were well-characterized by atomic force microscopy (AFM), photoelectron spectroscopy (XPS) and the water contact angle technique. Electrochemically induced polymerization mechanisms were discussed. Current responses from poly(CAF-ASP) were employed for ASP determination, and a linear dynamic range from 0.05 µM to 10 μM was obtained using differential pulse voltammetry (DPV). The detection limit (S/N = 3) was 0.0076 µM, the quantitation limit (S/N=10) was 0.0256 µM and the sensitivity was 12.067 μA μM-1. Common additives in soft drinks do not interfere with the ASP analysis. The proposed assay and a reference high-performance liquid chromatography (HPLC) were applied for the determination of ASP in two soft drinks using the standard addition method, and satisfactory recoveries and good agreement were obtained. 300 67-76 2022-10-14T14:38:36Z 2022-10-14T14:38:36Z 2019 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1544 en Electrochimica Acta [1] K. O’Donnell, M. W. Kearsley, Sweeteners and sugar alternatives in food technology, 2nd Ed. A John Wiley & Sons Ltd. UK, 2012. [2] M. Marimovich, C. L. Galli, C. Bosetti, S. Gallus, C. L. Vecchia, Aspartame, low-calorie sweeteners and disease: Regulatory safety and epidemiological issues, Food Chemical Toxicol. 60 (2013) 109–115. [3] B. A. Magnuson, G. A. Burdock, J. Doull, R. M. Kroes, G. M. Marsh, M. W. Pariza, P. S. Spencer, W. J. Waddell, R. Walker, G. M. Williams, Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and Epidemiological studies, Critical reviews in Toxicol. 37 (2007) 629–727. [4] S. Gallus, L. Scotti, E. Negri, R. Talamani, S. Franceschi, M. Montella, A. Giacosa, L. Dal Maso, C. La Vecchia, Artificial sweeteners and cancer risk in a nerwork of case-control studies, Annals of Oncology 18 (2007) 40–44. [5] M. Soffritti, F. Belpoggi, M. Manservigi, E. Tibaldi, M. Lauriola, L. Falcioni, L. Bua Aspartame administered in Feed, beginning prenatally through life span, induces cancers of the liver and lung in male Swiss mice, Am. J. of industrial medicine 53 (2010) 1197–1206. [6] A. Zygler, A. Wasik, J. Namiesnik, Analytical methodologies for determination of artificial sweeteners in foodstuffs, Trends in Anal. Chem. 28 (2009) 1082–1102. [7] J. P. Vistuba, M. D. Dolzan, L. Vitali, M. A. L. de Oliveira, G. A. Micke, Sub-minute method for simultaneous determination of aspartame, cyclamate, acesulfame-K and saccharin in food and pharmaceutical samples by capillary zone electrophoresis, J. of Chromatogr. A 1396 (2015) 148–152. [8] X. Hou, J. Ma, X. He, L. Chen, S. Wang, L. He, A stop-flow two-dimensional liquid chromatography method for determination of food additives in yogurt, Anal. Methods 7 (2015) 2141–2148. [9] M. A. Cantarelli, R. G. Pellerano, E. J. Marchevsly, J. M. Camina, Simultaneous determination of aspartame and acesulfame-K by molecular absorption spectrophotometry using multivariate calibration and validation by high performance liquid chromatography, Food Chem. 115 (2009) 1128–1132. [10] M. Grembecka, P. Szefer, Simultaneous determination of caffeine and aspartame in diet supplements and non-alcoholic beverages using liquid-chromatography coupled to corona CAD and UV-DAD detectors, Food Anal. Methods 5 (2012) 1010-1017. [11] S. Mazurek, R. Szostak, Quantification of aspartame in commercial sweeteners by FT-Raman spectroscopy, Food Chem. 125 (2011) 1051–1057. [12] A. B. Bergamo, J. A. F. Silva, D. P. Jesus, Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in soft drinks and tabletop sweetener formulations by capillary electrophoresis with capacitively coupled contactless conductivity detection, Food Chem. 124 (2011) 1714–1717. [13] J. C. Yang, J. Y. Park, Surface imprinted conducting polymer patterns electrochemicallygrown from gold pinhole arrays on 2D inverse silica opals and theireffective use in aspartame detection, Sensors and Actuators B 255 (2018) 463–470. [14] G. C. Galletti, G. Chiavari, P. Bocchini, Thermal decomposition products of aspartame as determined by pyrolysis-gas chromatography/ mass spectrometry, J. Anal. and Applied pyrolysis 32 (1995) 137–151. [15] A. Zygler, A. Wasik, A. Kot-Wasik, Determination of nine high-intensity sweeteners in various foods by high performance liquid chromatography with mass spectrometric detection, Anal. Bioanal. Chem. 400 (2011) 2159–2172. [16] D. Odaci, S. Timur, A. Telefoncu, Carboxyl esterase-alcohol oxidase based biosensor for the aspartame determination, Food Chem. 84 (2004) 493–496. [17] U. A. Kirgoz, D. Odaci, S. Timur, A. Merkoci, S. Alegret, N. Besun, A. Telefoncu, A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection, Anal. Chim. Acta 570 (2006) 165–169. [18] M.-C. Radulescu, B. Bucur, M.-P. Bucur, G. L. Radu, Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis, Sensors 14 (2014) 1028–1038. [19] F. Qu, Z. H. Qi, K. N. Liu, S. F. Mou, Determination of aspartame by ion chromatography with electrochemical integrated amperometric detection, J. of Chromatogr. A 850 (1999) 277–281. [20] K. Balgobind, S. Kanchi, D. Sharma, K. Bisetty, M. I. Sabela, Hybrid of ZnO NPs/MWCNTs for electrochemical determination of aspartame in food and beverage samples, J. Electroanal. Chem. 74 (2016) 51–57. [21] G.D. Pierini, N.E. Llamas, W.D. Fragoso, S.G. Lemos, M.S. Di Nezio, M.E. Centurión, Simultaneous determination of acesulfame-K and aspartame using linear sweep voltammetry and multivariate calibration, Microchemical J. 106 (2013) 347–350. [22] A. Bathinapatla, S. Kanchi, P. Singh, M. I. Sabela, K. Bisetty, Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame, Biosen. Bioelec. 67 (2015) 200–207. [23] R. A. Medeiros, A. E. de Carvalho, R. C. Rocha-Filho, O. Fatibello-Filho, Simultaneous square wave voltametric determination of aspartame and cyclamate using a boron-doped diamond electrode , Talanta 76 (2008) 685–689. [24] P. B. Deroco, R. A. Medeiros, R. C. Rocha-Filho, O. Fatibello-Filho, Simultaneous voltammetric determination of aspartame and acesulfame-K in food products using an anodically pretreated boron-doped diamond electrode, Anal. Methods 7 (2015) 2135–2140. [25] C. A. Rice-Evans, N. J. Miller, G. Paganga, Antioxidant properties of phenolic compounds, Trends in Plant Sci. 2 (1997) 152–159. [26] H. Da, X. J. Gu, P. G. Xiao, Medicinal plants: Chemistry, Biology and Omics, Ch 14, Woodhead publishing, UK, 2015. [27] A. B. Moghaddam, M. R. Ganjali, R. Divarvand, P. Norouzi, A. A. Saboury, A. A. Moosavi-Movahedi, Electrochemical behavior of caffeic acid at single-walled carbon nanotube: graphite-based electrode, Biophy. Chem. 128 (2007) 30–37. [28] C. Giacomelli, K. Ckless, D. Galato, F. S. Miranda, A. Spinelli, Electrochemistry of caffeic acid aqueous solution with pH 2.0 to 8.5, J. Braz. Chem. Soc. 13 (2002) 332–338. [29] R. Arakawa, M. Yamaguchi, H. Hotta, T. Osakai, T. Kimoto, Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 15 (2004) 1228–1236. [30] P. T. Lee, J. C. Harfield, A. Crossley, B. S. Pilgrimc, R. G. Compton, Significant changes in pKa between bulk aqueous solution and surface immobilized species: orthohydroquinones, RSC Adv. 3 (2013) 7347–7354. [31] C.-C. Zeng, C.-F. Liu, J. Zeng, R.-G. Zhong, Electrochemical synthesis of 6-arylsulfonyl caffeic acid derivatives in aqueous medium, J. Electroanal. Chem. 608 (2007) 85–90. [32] N.-T. Zhang, X.-G. Gao, C.-C. Zeng, L.-M. Hu, H.-Y. Tian, Y.-B. She, Electrochemical oxidation of catechols in the presence of enaminone: exclusive - arylation, RSC Adv. 2 (2012) 298–306. [33] C.-C. Zeng, D.-W. Ping, L.-M. Hu, X.-Q. Song, R.-G. Zhong, Anodic oxidation of catechols in the presence of -oxoketene N,N-acetals with a tetrahydropyrimidine ring: selective -arylation reaction, Org. Biomol. Chem. 8 (2010) 2465–2472. [34] D. Nematollahi, H. Goodarzi, Electrochemical study of 4-tert-butylcatechol in the presence of 1,3-dimethylbarbituric acid and 1,3-diethyl-2-thiobarbituric acid. Application to the electro-organic synthesis of new corresponding spiropyrimidine derivatives, J. Electroanal. Chem. 517 (2001) 121–125. [35] N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electrochemically initiated 1,4-Nucleophilic substitutions: A general strategy for the Analytical detection of Hydrogen sulfide, Electroanalysis 13 (2001) 432-436. [36] N.S. Lawrence, J. Davis, R.G. Compton, Electrochemical detection of thiols in biological media, Talanta, 53 (2001) 1089-1094. [37] S. Shahrokhian, S. Bozorgzadeh, Electrochemical oxidation of dopamine in the presence of sulfhydryl compounds: Application to the square-wave voltammetric detection of penicillamine and cysteine, Electrochimica Acta 51 (2006) 4271–4276. [38] X. Han, H-F. Lin, Y. Zheng, The role of oxygen functional groups in the adsorption of heteroaromatic nitrogen compounds, J. of Hazardous Materials 297 (2015) 217-223. [39] R. L. McCreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev. 108 (2008) 2646-2687. [40] M-H. Chiu, W-C. Wei, J-M. Zen, The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+, Electrochemistry Communications 13 (2011) 605-607. [41] A. S. Kumar, S. Sornambikai, P. Gayathri, J.-M. Zen, Selective covalent immobilization of catechol on activated carbon electrodes, J. Electroanal. Chem. 641 (2010) 131–135. [42] M. Thiruppathi, N. Thiyagarajan, M. Gopinathan, J.-M. Zen, Role of defect sites and oxygen functionalities on preanodized screen printed carbon electrode for adsorption and oxidation of polyaromatic hydrocarbons. Electrochem. Commu. 69 (2016) 15–18. [43] W-L. Yeh, Y-R. Kuo, S-H. Cheng, Voltammetry and flow-injection amperometry for indirect determination of dopamine, Electrochemistry Communications 10 (2008) 66–70. [44] Nei Jin Ke, Shao-Sheng Lu, Shu-Hua Cheng, A strategy for the determination of dopamine at a bare glassy, carbon electrode: p-Phenylenediamine as a nucleophile, Electrochemistry Communications 8 (2006) 1514–1520. [45] A. A. Abdelwahab, O. S. Jung, Y. B. Shim, Enhanced electrocatalytic reduction of oxygen with a molecule having multi-quinone moieties adsorbed in the nanofiber film, Journal of Electroanalytical Chemistry 632 (2009) 102–108. [46] P.T. Lee, K.R. Ward, K. Tschulik, G. Chapman, R.G. Compton, Electrochemical detection of glutathione using a poly(caffeic acid) nanocarbon composite modified electrode, Electroanal. 26 (2014) 366–373. [47] A. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd Ed. Ch. 6, p. 231. John Wiley & Sons, Inc., 2001. [48] Y.-L. Su, S.-H. Cheng, Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film, Anal. Chim. Acta 901 (2015) 41–50. Elsevier United Kingdom