Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis
The striated muscle-specific mitsugumin 53 (MG53) is a novel E3 ligase that induces the ubiquitination of insulin receptor substrate 1 (IRS-1) during skeletal myogenesis, negatively regulating insulin-like growth factor and insulin signaling. Here we show that focal adhesion kinase (FAK) is the seco...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2022
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/1570 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-1570 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Focal Adhesion Kinase, Myogenesis, Skeletal Muscle, Ubiquitin-conjugating Enzyme (Ubc), Ubiquitin-dependent Protease |
spellingShingle |
Focal Adhesion Kinase, Myogenesis, Skeletal Muscle, Ubiquitin-conjugating Enzyme (Ubc), Ubiquitin-dependent Protease Nguyễn, Thị Huỳnh Nga Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
description |
The striated muscle-specific mitsugumin 53 (MG53) is a novel E3 ligase that induces the ubiquitination of insulin receptor substrate 1 (IRS-1) during skeletal myogenesis, negatively regulating insulin-like growth factor and insulin signaling. Here we show that focal adhesion kinase (FAK) is the second target of MG53 during skeletal myogenesis. The FAK protein level gradually decreased, whereas its mRNA level was constant during myogenesis in C2C12 cells and MyoD-overexpressing mouse embryonic fibroblasts. The FAK protein was associated with the E2 enzyme UBE2H and the E3 enzyme MG53 in endogenous and exogenous immunoprecipitation experiments. FAK ubiquitination and degradation was induced by MG53 overexpression in myoblasts but abolished by MG53 or UBE2H knockdown in myotubes. Because RING-disrupted MG53 mutants (C14A and ΔR) did not induce FAK ubiquitination and degradation, the RING domain was determined to be required for MG53-induced FAK ubiquitination. Taken together, these data indicate that MG53 induces FAK ubiquitination with the aid of UBE2H during skeletal myogenesis. |
format |
Journal article |
author |
Nguyễn, Thị Huỳnh Nga |
author_facet |
Nguyễn, Thị Huỳnh Nga |
author_sort |
Nguyễn, Thị Huỳnh Nga |
title |
Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
title_short |
Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
title_full |
Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
title_fullStr |
Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
title_full_unstemmed |
Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
title_sort |
mitsugumin 53 (mg53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis |
publishDate |
2022 |
url |
http://scholar.dlu.edu.vn/handle/123456789/1570 |
_version_ |
1768306088815362048 |
spelling |
oai:scholar.dlu.edu.vn:123456789-15702022-11-09T06:42:20Z Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis Nguyễn, Thị Huỳnh Nga Focal Adhesion Kinase, Myogenesis, Skeletal Muscle, Ubiquitin-conjugating Enzyme (Ubc), Ubiquitin-dependent Protease The striated muscle-specific mitsugumin 53 (MG53) is a novel E3 ligase that induces the ubiquitination of insulin receptor substrate 1 (IRS-1) during skeletal myogenesis, negatively regulating insulin-like growth factor and insulin signaling. Here we show that focal adhesion kinase (FAK) is the second target of MG53 during skeletal myogenesis. The FAK protein level gradually decreased, whereas its mRNA level was constant during myogenesis in C2C12 cells and MyoD-overexpressing mouse embryonic fibroblasts. The FAK protein was associated with the E2 enzyme UBE2H and the E3 enzyme MG53 in endogenous and exogenous immunoprecipitation experiments. FAK ubiquitination and degradation was induced by MG53 overexpression in myoblasts but abolished by MG53 or UBE2H knockdown in myotubes. Because RING-disrupted MG53 mutants (C14A and ΔR) did not induce FAK ubiquitination and degradation, the RING domain was determined to be required for MG53-induced FAK ubiquitination. Taken together, these data indicate that MG53 induces FAK ubiquitination with the aid of UBE2H during skeletal myogenesis. 289 6 3209–3216 2022-11-09T02:47:29Z 2022-11-09T02:47:29Z 2014 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1570 10.1074/jbc.M113.525154 en JOURNAL OF BIOLOGICAL CHEMISTRY 0021-9258 1. Bisht, B., and Dey, C. S. (2008) Focal adhesion kinase contributes to insulin- induced actin reorganization into a mesh harboring glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol. 9, 48 2. Flück, M., Ziemiecki, A., Billeter, R., and Müntener, M. (2002) Fibre-type specific concentration of focal adhesion kinase at the sarcolemma. Influence of fibre innervation and regeneration. J. Exp. Biol. 205, 2337–2348 3. Franchini, K. G. (2012) Focal adhesion kinase. The basis of local hypertrophic signaling domains. J. Mol. Cell. Cardiol. 52, 485–492 4. Shen, Y., and Schaller, M. D. (1999) Focal adhesion targeting. The critical determinant of FAK regulation and substrate phosphorylation. Mol. Biol. Cell 10, 2507–2518 5. Mao, H., Li, F., Ruchalski, K., Mosser, D. D., Schwartz, J. H., Wang, Y., and Borkan, S. C. (2003) Hsp72 inhibits focal adhesion kinase degradation in ATP-depleted renal epithelial cells. J. Biol. Chem. 278, 18214–18220 6. Luo, S. W., Zhang, C., Zhang, B., Kim, C. H., Qiu, Y. Z., Du, Q. S., Mei, L., and Xiong, W. C. (2009) Regulation of heterochromatin remodelling and myogenin expression during muscle differentiation by FAK interaction with MBD2. EMBO J. 28, 2568–2582 7. Quach, N. L., Biressi, S., Reichardt, L. F., Keller, C., and Rando, T. A. (2009) Focal adhesion kinase signaling regulates the expression of caveolin 3 and 1 integrin, genes essential for normal myoblast fusion. Mol. Biol. Cell 20, 3422–3435 8. Kim, J., Löwe, T., and Hoppe, T. (2008) Protein quality control gets muscle into shape. Trends Cell Biol. 18, 264–272 9. Lundin, V. F., Leroux, M. R., and Stirling, P. C. (2010) Quality control of cytoskeletal proteins and human disease. Trends Biochem. Sci. 35, 288–297 10. Fang, S., and Weissman, A. M. (2004) A field guide to ubiquitylation. Cell. Mol. Life Sci. 61, 1546–1561 11. Chen, C., Seth, A. K., and Aplin, A. E. (2006) Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol. Cancer Res. 4, 695–707 12. Lee, C. S., Yi, J. S., Jung, S. Y., Kim, B. W., Lee, N. R., Choo, H. J., Jang, S. Y., Han, J., Chi, S. G., Park, M., Lee, J. H., and Ko, Y. G. (2010) TRIM72 negatively regulates myogenesis via targeting insulin receptor substrate-1. Cell Death Differ. 17, 1254–1265 13. Yi, J. S., Park, J. S., Ham, Y. M., Nguyen, N., Lee, N. R., Hong, J., Kim, B. W., Lee, H., Lee, C. S., Jeong, B. C., Song, H. K., Cho, H., Kim, Y. K., Lee, J. S., Park, K. S., Shin, H., Choi, I., Lee, S. H., Park, W. J., Park, S. Y., Choi, C. S., Lin, P., Karunasiri, M., Tan, T., Duann, P., Zhu, H., Ma, J., and Ko, Y. G. (2013) MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat. Commun. 4, 2354 14. Song, R., Peng, W., Zhang, Y., Lv, F., Wu, H. K., Guo, J., Cao, Y., Pi, Y., Zhang, X., Jin, L., Zhang, M., Jiang, P., Liu, F., Meng, S., Zhang, X., Jiang, P., Cao, C. M., and Xiao, R. P. (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494, 375–379 15. Jung, S. Y., and Ko, Y. G. (2010) TRIM72, a novel negative feedback regulator of myogenesis, is transcriptionally activated by the synergism of MyoD (or myogenin) and MEF2. Biochem. Biophys. Res. Commun. 396, 238–245 16. Alloush, J., and Weisleder, N. (2013) TRIM proteins in therapeutic membrane repair of muscular dystrophy. JAMA Neurol. 70, 928–931 17. Cai, C., Masumiya, H., Weisleder, N., Matsuda, N., Nishi, M., Hwang, M., Ko, J. K., Lin, P., Thornton, A., Zhao, X., Pan, Z., Komazaki, S., Brotto, M., Takeshima, H., and Ma, J. (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11, 56–64 18. Hausenloy, D. J., and Yellon, D. M. (2010) Cell membrane repair as a mechanism for ischemic preconditioning? Circulation 121, 2547–2549 19. Shim, E. H., Kim, J. I., Bang, E. S., Heo, J. S., Lee, J. S., Kim, E. Y., Lee, J. E., Park, W. Y., Kim, S. H., Kim, H. S., Smithies, O., Jang, J. J., Jin, D. I., and Seo, J. S. (2002) Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep. 3, 857–861 20. Ahn, S., Kim, H. J., Chi, S. G., and Park, H. (2012) XIAP reverses various functional activities of FRNK in endothelial cells. Biochem. Biophys. Res. Commun. 419, 419–424 21. Clemente, C. F., Corat, M. A., Saad, S. T., and Franchini, K. G. (2005) Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R862–870 22. Gardrat, F., Montel, V., Raymond, J., and Azanza, J. L. (1997) Proteasome and myogenesis. Mol. Biolo. Rep. 24, 77–81 23. Liu, E., Côté, J. F., and Vuori, K. (2003) Negative regulation of FAK signaling by SOCS proteins. EMBO J. 22, 5036–5046 24. Rafiq, K., Guo, J., Vlasenko, L., Guo, X., Kolpakov, M. A., Sanjay, A., Houser, S. R., and Sabri, A. (2012) c-Cbl ubiquitin ligase regulates focal adhesion protein turnover and myofibril degeneration induced by neutrophil protease cathepsin G. J. Biol. Chem. 287, 5327–5339 25. Sekine, Y., Tsuji, S., Ikeda, O., Sugiyma, K., Oritani, K., Shimoda, K., Muromoto, R., Ohbayashi, N., Yoshimura, A., and Matsuda, T. (2007) Signaltransducing adaptor protein-2 regulates integrin-mediated T cell adhesion through protein degradation of focal adhesion kinase. J. Immunol. 179, 2397–2407 26. Kawaguchi, T., Yoshida, T., Harada, M., Hisamoto, T., Nagao, Y., Ide, T., Taniguchi, E., Kumemura, H., Hanada, S., Maeyama, M., Baba, S., Koga, H., Kumashiro, R., Ueno, T., Ogata, H., Yoshimura, A., and Sata, M. (2004) Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am. J. Pathol. 165, 1499–1508 27. Nakao, R., Hirasaka, K., Goto, J., Ishidoh, K., Yamada, C., Ohno, A., Okumura, Y., Nonaka, I., Yasutomo, K., Baldwin, K. M., Kominami, E., Higashibata, A., Nagano, K., Tanaka, K., Yasui, N., Mills, E. M., Takeda, S., and Nikawa, T. (2009) Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol. Cell. Biol. 29, 4798–4811 28. Swaney, D. L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N. J., and Villén, J. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10, 676–682 |