Mining Hidden Topics from Newspaper Quotations: The COVID-19 Pandemic

In this paper, we extract quotations from Al Jazeera’s news articles containing keywords related to the COVID-19 pandemic. We apply Latent Dirichlet allocation (LDA), coherence measures, and clustering algorithms to unsupervisedly explore latent topics from the dataset of about 3400 quotations to se...

Cur síos iomlán

Đã lưu trong:
Sonraí Bibleagrafaíochta
Príomhúdar: Tạ, Hoàng Thắng
Formáid: Conference paper
Teanga:English
Foilsithe: 2023
Rochtain Ar Líne:http://scholar.dlu.edu.vn/handle/123456789/2006
Clibeanna: Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Cur Síos
Achoimre:In this paper, we extract quotations from Al Jazeera’s news articles containing keywords related to the COVID-19 pandemic. We apply Latent Dirichlet allocation (LDA), coherence measures, and clustering algorithms to unsupervisedly explore latent topics from the dataset of about 3400 quotations to see how coronavirus impacts human beings. By combining noun phrases as inputs before the training and Cv measure for coherence values, we obtain an average coherence value of 0.66 with a least average number of topics of 24.8. The result covers some of the top issues that our world has been facing against the COVID-19 pandemic.