Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7...
Đã lưu trong:
Những tác giả chính: | , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer US
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2189 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Tóm tắt: | Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), as an electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor. The PCPDTBT :PC61BM active layers were prepared by spin-coating process from four different organic solvents: pure chlorobenzene, chlorobenzene with 2.5 vol% 1,2-ethanedithiol (EDT) additive, chlorobenzene with 2.5 vol% 1,8-octanedithiol (ODT) additive, and chlorobenzene with a combination of 2.5 vol% EDT and 2.5 vol% ODT additives. The smoothest surface of the active layer, which was observed by AFM, was obtained in the case of PCPDTBT : PC61BM prepared with a combination of EDT and ODT additives in chlorobenzene, and a maximum PCE of 3.5% was achieved. |
---|