Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance

Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Phạm, Hầu Thanh Việt, Nguyen, Truong Tam Nguyen, Trinh, Thanh Kieu, Lee, Sang Hoon, Park, Chinho
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Springer US 2023
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/2189
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2189
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic morphology, additives, bulk hetero-junction solar cell
spellingShingle morphology, additives, bulk hetero-junction solar cell
Phạm, Hầu Thanh Việt
Nguyen, Truong Tam Nguyen
Trinh, Thanh Kieu
Lee, Sang Hoon
Park, Chinho
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
description Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), as an electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor. The PCPDTBT :PC61BM active layers were prepared by spin-coating process from four different organic solvents: pure chlorobenzene, chlorobenzene with 2.5 vol% 1,2-ethanedithiol (EDT) additive, chlorobenzene with 2.5 vol% 1,8-octanedithiol (ODT) additive, and chlorobenzene with a combination of 2.5 vol% EDT and 2.5 vol% ODT additives. The smoothest surface of the active layer, which was observed by AFM, was obtained in the case of PCPDTBT : PC61BM prepared with a combination of EDT and ODT additives in chlorobenzene, and a maximum PCE of 3.5% was achieved.
format Journal article
author Phạm, Hầu Thanh Việt
Nguyen, Truong Tam Nguyen
Trinh, Thanh Kieu
Lee, Sang Hoon
Park, Chinho
author_facet Phạm, Hầu Thanh Việt
Nguyen, Truong Tam Nguyen
Trinh, Thanh Kieu
Lee, Sang Hoon
Park, Chinho
author_sort Phạm, Hầu Thanh Việt
title Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
title_short Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
title_full Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
title_fullStr Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
title_full_unstemmed Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
title_sort controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
publisher Springer US
publishDate 2023
url http://scholar.dlu.edu.vn/handle/123456789/2189
_version_ 1768306376923152384
spelling oai:scholar.dlu.edu.vn:123456789-21892023-05-09T10:22:55Z Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance Phạm, Hầu Thanh Việt Nguyen, Truong Tam Nguyen Trinh, Thanh Kieu Lee, Sang Hoon Park, Chinho morphology, additives, bulk hetero-junction solar cell Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), as an electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor. The PCPDTBT :PC61BM active layers were prepared by spin-coating process from four different organic solvents: pure chlorobenzene, chlorobenzene with 2.5 vol% 1,2-ethanedithiol (EDT) additive, chlorobenzene with 2.5 vol% 1,8-octanedithiol (ODT) additive, and chlorobenzene with a combination of 2.5 vol% EDT and 2.5 vol% ODT additives. The smoothest surface of the active layer, which was observed by AFM, was obtained in the case of PCPDTBT : PC61BM prepared with a combination of EDT and ODT additives in chlorobenzene, and a maximum PCE of 3.5% was achieved. 33 2 678 - 682 2023-05-09T10:22:51Z 2023-05-09T10:22:51Z 2015-07-21 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2189 10.1007/s11814-015-0162-3 en Korean Journal of Chemical Engineering 0256-1115; 1975-7220 1. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001). 2. S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007). 3. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed., 47, 58 (2008). 4. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and S. P. Williams, Adv. Mater., 22, 3839 (2010). 5. C. Liu, C. Yi, K. Wang, Y. Yang, R. S. Bhatta, M. Tsige, S. Xiao and X. Gong, ACS Appl. Mater. Interfaces, 7(8), 4928 (2015). 6. Y. Chang, Y. Su and C. Leu, Thin Solid Films, 534, 492 (2013). 7. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). 8. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv. Funct. Mater., 17, 1636 (2007). 9. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Adeand and H. Yan, Nature Commun., 5, 5293 (2014). 10. H. Liao, P. Chen, R. P. H. Chang and W. Su, Polymers, 6(11), 2784 (2014). 11. S. Cook, A. Furube and R. Katoh, Japanese J. Appl. Phys., 47, 1238 (2008). 12. W. Zhang, Y. Wu, Q. Bao, F. Gao and J. Fang, Adv. Energy Mater.,4, 1400359 (2014). 13. Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu and Y. Cao, Adv. Mater., 23, 3086 (2011). 14. Y. M. Chang and J. M. Ding, Thin Solid Films, 520, 5400 (2012). 15. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Adv. Mater., 20, 2376 (2008). 16. S. K. Hau, H. Yip, O. Acton, S. Nam, H. Maa and A. K.-Y. Jen, J. Mater. Chem., 18, 5113 (2008). 17. G. Wang, T. Jiu, G. Tang, J. Li, P. Li, X. Song, F. Lu and J. Fang, ACS Sustainable Chem. Eng., 2, 1331 (2014). 18. P. Ruankham, S. Yoshikawa and T. Sagawa, Phys. Chem. Chem. Phys., 15, 9516 (2013). 19. M. Tanveer, A. Habib and M. Bilal Khan, J. Eng. Sci., 6(1), 15 (2013). 20. L. Chen, Z. Xu, Z. Honga and Y. Yang, J. Mater. Chem., 20, 2575 (2010). 21. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 18, 572 (2006). 22. J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong and Y. Yang, ACS Nano, 5, 6210 (2011). 23. A. K. Pandey, M. Aljada, M. Velusamy, P. L. Burn and P. Meredith, Adv. Mater., 24, 1055 (2012). 24. Q. Li, W. J. Yoon and H. Ju, Nanoscale Res. Lett., 9, 460 (2014). 25. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature Mater., 6, 497 (2007). 26. M. T. Dang and J. D. Wuest, Chem. Soc. Rev., 42, 9105 (2013). 27. S. Ochiai, S. Imamura, S. Kannappan, K. Palanisamy and P. K. Shin, Cur. Appl. Phys., 13, S58 (2013). Springer US