Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance
Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7...
Đã lưu trong:
Những tác giả chính: | , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer US
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2189 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2189 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
morphology, additives, bulk hetero-junction solar cell |
spellingShingle |
morphology, additives, bulk hetero-junction solar cell Phạm, Hầu Thanh Việt Nguyen, Truong Tam Nguyen Trinh, Thanh Kieu Lee, Sang Hoon Park, Chinho Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
description |
Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), as an electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor. The PCPDTBT :PC61BM active layers were prepared by spin-coating process from four different organic solvents: pure chlorobenzene, chlorobenzene with 2.5 vol% 1,2-ethanedithiol (EDT) additive, chlorobenzene with 2.5 vol% 1,8-octanedithiol (ODT) additive, and chlorobenzene with a combination of 2.5 vol% EDT and 2.5 vol% ODT additives. The smoothest surface of the active layer, which was observed by AFM, was obtained in the case of PCPDTBT : PC61BM prepared with a combination of EDT and ODT additives in chlorobenzene, and a maximum PCE of 3.5% was achieved. |
format |
Journal article |
author |
Phạm, Hầu Thanh Việt Nguyen, Truong Tam Nguyen Trinh, Thanh Kieu Lee, Sang Hoon Park, Chinho |
author_facet |
Phạm, Hầu Thanh Việt Nguyen, Truong Tam Nguyen Trinh, Thanh Kieu Lee, Sang Hoon Park, Chinho |
author_sort |
Phạm, Hầu Thanh Việt |
title |
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
title_short |
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
title_full |
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
title_fullStr |
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
title_full_unstemmed |
Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
title_sort |
controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance |
publisher |
Springer US |
publishDate |
2023 |
url |
http://scholar.dlu.edu.vn/handle/123456789/2189 |
_version_ |
1768306376923152384 |
spelling |
oai:scholar.dlu.edu.vn:123456789-21892023-05-09T10:22:55Z Controlling the morphology of the active layer by using additives and its effect on bulk hetero-junction solar cell performance Phạm, Hầu Thanh Việt Nguyen, Truong Tam Nguyen Trinh, Thanh Kieu Lee, Sang Hoon Park, Chinho morphology, additives, bulk hetero-junction solar cell Improvement of the surface roughness and power conversion efficiency (PCE) of bulk hetero-junction (BHJ) solar cells was made by the addition of organic additives for the cells based on a low energy-gap polymer, poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), as an electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor. The PCPDTBT :PC61BM active layers were prepared by spin-coating process from four different organic solvents: pure chlorobenzene, chlorobenzene with 2.5 vol% 1,2-ethanedithiol (EDT) additive, chlorobenzene with 2.5 vol% 1,8-octanedithiol (ODT) additive, and chlorobenzene with a combination of 2.5 vol% EDT and 2.5 vol% ODT additives. The smoothest surface of the active layer, which was observed by AFM, was obtained in the case of PCPDTBT : PC61BM prepared with a combination of EDT and ODT additives in chlorobenzene, and a maximum PCE of 3.5% was achieved. 33 2 678 - 682 2023-05-09T10:22:51Z 2023-05-09T10:22:51Z 2015-07-21 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2189 10.1007/s11814-015-0162-3 en Korean Journal of Chemical Engineering 0256-1115; 1975-7220 1. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001). 2. S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007). 3. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed., 47, 58 (2008). 4. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and S. P. Williams, Adv. Mater., 22, 3839 (2010). 5. C. Liu, C. Yi, K. Wang, Y. Yang, R. S. Bhatta, M. Tsige, S. Xiao and X. Gong, ACS Appl. Mater. Interfaces, 7(8), 4928 (2015). 6. Y. Chang, Y. Su and C. Leu, Thin Solid Films, 534, 492 (2013). 7. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). 8. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv. Funct. Mater., 17, 1636 (2007). 9. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Adeand and H. Yan, Nature Commun., 5, 5293 (2014). 10. H. Liao, P. Chen, R. P. H. Chang and W. Su, Polymers, 6(11), 2784 (2014). 11. S. Cook, A. Furube and R. Katoh, Japanese J. Appl. Phys., 47, 1238 (2008). 12. W. Zhang, Y. Wu, Q. Bao, F. Gao and J. Fang, Adv. Energy Mater.,4, 1400359 (2014). 13. Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu and Y. Cao, Adv. Mater., 23, 3086 (2011). 14. Y. M. Chang and J. M. Ding, Thin Solid Films, 520, 5400 (2012). 15. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Adv. Mater., 20, 2376 (2008). 16. S. K. Hau, H. Yip, O. Acton, S. Nam, H. Maa and A. K.-Y. Jen, J. Mater. Chem., 18, 5113 (2008). 17. G. Wang, T. Jiu, G. Tang, J. Li, P. Li, X. Song, F. Lu and J. Fang, ACS Sustainable Chem. Eng., 2, 1331 (2014). 18. P. Ruankham, S. Yoshikawa and T. Sagawa, Phys. Chem. Chem. Phys., 15, 9516 (2013). 19. M. Tanveer, A. Habib and M. Bilal Khan, J. Eng. Sci., 6(1), 15 (2013). 20. L. Chen, Z. Xu, Z. Honga and Y. Yang, J. Mater. Chem., 20, 2575 (2010). 21. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 18, 572 (2006). 22. J. Yang, J. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong and Y. Yang, ACS Nano, 5, 6210 (2011). 23. A. K. Pandey, M. Aljada, M. Velusamy, P. L. Burn and P. Meredith, Adv. Mater., 24, 1055 (2012). 24. Q. Li, W. J. Yoon and H. Ju, Nanoscale Res. Lett., 9, 460 (2014). 25. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature Mater., 6, 497 (2007). 26. M. T. Dang and J. D. Wuest, Chem. Soc. Rev., 42, 9105 (2013). 27. S. Ochiai, S. Imamura, S. Kannappan, K. Palanisamy and P. K. Shin, Cur. Appl. Phys., 13, S58 (2013). Springer US |