A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
বিন্যাস: Journal article
ভাষা:English
প্রকাশিত: Springer 2023
অনলাইন ব্যবহার করুন:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
বিবরন
সংক্ষিপ্ত:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.