Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor

The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggrava...

Cur síos iomlán

Đã lưu trong:
Sonraí Bibleagrafaíochta
Những tác giả chính: Deng, Lijuan, Guo, Wenshan, Ngo, Huu Hao, Du, Bing, Wei, Qin, Tran, Ngoc Han, Nguyen Cong Nguyen, Chen, Shiao-Shing, Li, Jianxin
Formáid: Journal article
Teanga:English
Foilsithe: 2023
Ábhair:
Rochtain Ar Líne:https://scholar.dlu.edu.vn/handle/123456789/3013
https://www.sciencedirect.com/science/article/pii/S0960852416300323
Clibeanna: Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Cur Síos
Achoimre:The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling.