HỆ THỐNG PHÁT HIỆN TẤN CÔNG BOTNET SỬ DỤNG WEB PROXY VÀ CONVOLUTIONAL NEURAL NETWORK

Botnets are increasingly becoming the most dangerous threats in the field of network security, and many different approaches to detecting attacks from botnets have been studied. Whatever approach is used, the evolution of the botnet's nature and the set of defined rules for detecting botnets ca...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Trần, Đắc Tốt, Phạm, Tuấn Khiêm, Nguyễn, Huy Phương
Định dạng: Bài viết
Ngôn ngữ:Vietnamese
Được phát hành: Trường Đại học Đà Lạt 2023
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/114367
https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/652
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:Botnets are increasingly becoming the most dangerous threats in the field of network security, and many different approaches to detecting attacks from botnets have been studied. Whatever approach is used, the evolution of the botnet's nature and the set of defined rules for detecting botnets can affect the performance of botnet detection systems. In this paper, we propose a general family of architectures that uses a convolutional neural network group to transform the raw characteristics provided by network flow recording and analysis tools into higher-level features, then conducts a (binary) class to assess whether a flow corresponds to a botnet attack. We experimented on the CTU-13 dataset using different configurations of the convolutional neural network to evaluate the potential of deep learning on the botnet detection problem. In particular, we propose a botnet detection system that uses a web proxy. This technique can be helpful in implementing a low-cost, but highly effective botnet detection system.