Application of artificial neural network with fine–tuning parameters for forecasting PM2.5 in deep open–pit mines: A case study
Gorde:
Egile Nagusiak: | Xuan, Nam Bui, Hoang, Nguyen, Qui, Thao Le, Tran, Quang Hieu |
---|---|
Formatua: | Artikulua |
Hizkuntza: | Vietnamese |
Argitaratua: |
2025
|
Gaiak: | |
Sarrera elektronikoa: | https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/271131 |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Antzeko izenburuak
-
Exploiting the results of running the GEOS-CF model to evaluate PM2.5 concentration in near real-time in Vietnam
nork: Uyen, Khanh Le, et al.
Argitaratua: (2025) -
Application of EnHEBIS tool to assess economic impact due to health effects from PM2.5 pollution – A case study at Long An province, Vietnam
nork: Phong, Hoang Nguyen, et al.
Argitaratua: (2025) -
Development of a prototype system of the very short-range forecast of precipitation in Vietnam
nork: Kazuo, Saito, et al.
Argitaratua: (2025) -
Forecasting the track and intensity Damrey storm in 2017 by the multi–physical ensemble Kalman filter
nork: Minh, Thi Pham, et al.
Argitaratua: (2025) -
Trend and forecast the saline intrusion at estuaries in the coastal Mekong delta: A case study of the coastal sub–region between the Tien and Hau rivers
nork: Nguyen, Van Hong, et al.
Argitaratua: (2025)