A property ofbicriteria affine vector variational inequalities

By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of co...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyễn, Thị Thu Hương, Trần, Ninh Ho, Tạ, Duy Phượng, Nguyễn, Đông Yên
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Trường Đại học Đà Lạt 2012
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/31068
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of connected components of the Pareto solution set and the weak. Pareto solution set is obtained. Consequences of the results for bicriteria quadratic vector optimization problems and linear fractional vector optimization problems are discussed in detail. Under an additional assumption on the data set, Theorems 3.1 and 3.2 in this paper solve in the affirmative Question 1 in [17, p. 66] and Question 9.3 in [151 for the case of bicriteria problems without requiring the monotonicity. Besides, the theorems also give a partial solution to Question 2in [17] about finding an upperboundfor the numbers ofconnected components of the solution sets under investigation. Mathematics Subject Classification. 49J40, 49J53, 90C29.