A property ofbicriteria affine vector variational inequalities

By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of co...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyễn, Thị Thu Hương, Trần, Ninh Ho, Tạ, Duy Phượng, Nguyễn, Đông Yên
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Trường Đại học Đà Lạt 2012
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/31068
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:DLU123456789-31068
record_format dspace
spelling oai:scholar.dlu.edu.vn:DLU123456789-310682023-10-27T14:41:42Z A property ofbicriteria affine vector variational inequalities Nguyễn, Thị Thu Hương Trần, Ninh Hoà Tạ, Duy Phượng Nguyễn, Đông Yên Bicriteria affine vector variational inequality Acalarlaation Solution set Connectedness By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of connected components of the Pareto solution set and the weak. Pareto solution set is obtained. Consequences of the results for bicriteria quadratic vector optimization problems and linear fractional vector optimization problems are discussed in detail. Under an additional assumption on the data set, Theorems 3.1 and 3.2 in this paper solve in the affirmative Question 1 in [17, p. 66] and Question 9.3 in [151 for the case of bicriteria problems without requiring the monotonicity. Besides, the theorems also give a partial solution to Question 2in [17] about finding an upperboundfor the numbers ofconnected components of the solution sets under investigation. Mathematics Subject Classification. 49J40, 49J53, 90C29. 2012-06-18T06:59:57Z 2012-06-18T06:59:57Z 2012 Article https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/31068 en Tạp chí Khoa học Đại học Đà Lạt, số 3a;tr. 57-62 application/pdf Trường Đại học Đà Lạt
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Bicriteria affine vector variational inequality
Acalarlaation
Solution set
Connectedness
spellingShingle Bicriteria affine vector variational inequality
Acalarlaation
Solution set
Connectedness
Nguyễn, Thị Thu Hương
Trần, Ninh Hoà
Tạ, Duy Phượng
Nguyễn, Đông Yên
A property ofbicriteria affine vector variational inequalities
description By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of connected components of the Pareto solution set and the weak. Pareto solution set is obtained. Consequences of the results for bicriteria quadratic vector optimization problems and linear fractional vector optimization problems are discussed in detail. Under an additional assumption on the data set, Theorems 3.1 and 3.2 in this paper solve in the affirmative Question 1 in [17, p. 66] and Question 9.3 in [151 for the case of bicriteria problems without requiring the monotonicity. Besides, the theorems also give a partial solution to Question 2in [17] about finding an upperboundfor the numbers ofconnected components of the solution sets under investigation. Mathematics Subject Classification. 49J40, 49J53, 90C29.
format Article
author Nguyễn, Thị Thu Hương
Trần, Ninh Hoà
Tạ, Duy Phượng
Nguyễn, Đông Yên
author_facet Nguyễn, Thị Thu Hương
Trần, Ninh Hoà
Tạ, Duy Phượng
Nguyễn, Đông Yên
author_sort Nguyễn, Thị Thu Hương
title A property ofbicriteria affine vector variational inequalities
title_short A property ofbicriteria affine vector variational inequalities
title_full A property ofbicriteria affine vector variational inequalities
title_fullStr A property ofbicriteria affine vector variational inequalities
title_full_unstemmed A property ofbicriteria affine vector variational inequalities
title_sort property ofbicriteria affine vector variational inequalities
publisher Trường Đại học Đà Lạt
publishDate 2012
url https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/31068
_version_ 1819847433077653504