Parallel algorithms of random forests for classifying very large datasets

The random forests algorithm proposed by Breiman is an ensemble-based approach with very high accuracy. The learning and classification tasks of a set of decision trees take a lot of time, make it intractable when dealing with ve ry large datasets. There is a need to scale up the random forests a...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Do, Thanh Nghi, Pham, Nguyen Khang
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Trường Đại học Đà Lạt 2014
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/37523
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:The random forests algorithm proposed by Breiman is an ensemble-based approach with very high accuracy. The learning and classification tasks of a set of decision trees take a lot of time, make it intractable when dealing with ve ry large datasets. There is a need to scale up the random forests algorithm to handle massive datasets. We propose parallel algorithms of random forests to take into account the benefits of Grids computing. These algorithms improve training and classification time compared with the original ones. The experimental results on large datasets including Forest cover type, KDD Cup 1999, Connect-4 from the UCI data repository showed that the training and classification time of parallel algorithms are significantly reduced.