Mathematics for machine learning

"The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability, and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Deisenroth, Marc Peter
Tác giả khác: Aldo Faisal, A
Định dạng: Sách
Ngôn ngữ:Undetermined
Được phát hành: Cambridge ;New York, NY Cambridge University Press 2020
Những chủ đề:
Truy cập trực tuyến:http://lrc.tdmu.edu.vn/opac/search/detail.asp?aID=2&ID=41689
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Trung tâm Học liệu Trường Đại học Thủ Dầu Một
Miêu tả
Tóm tắt:"The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability, and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models, and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts"
Mô tả vật lý:xvii,371p.