Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors

The onset behavior of output characteristics in tunnel field-effect transistors (TFETs) importantly determines the performance of digital TFET-based circuits. In this paper, we analytically and numerically examine the dependence of the onset behavior of output characteristics on the bandgap of semic...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Chun-Hsing Shih, Nguyễn, Đăng Chiến
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2023
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/2075
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2075
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Superlinear onset
output characteristic
line-tunneling
band-to-band tunneling
low-bandgap material
tunnel field-effect transistor (TFET)
spellingShingle Superlinear onset
output characteristic
line-tunneling
band-to-band tunneling
low-bandgap material
tunnel field-effect transistor (TFET)
Chun-Hsing Shih
Nguyễn, Đăng Chiến
Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
description The onset behavior of output characteristics in tunnel field-effect transistors (TFETs) importantly determines the performance of digital TFET-based circuits. In this paper, we analytically and numerically examine the dependence of the onset behavior of output characteristics on the bandgap of semiconductors in line-tunneling TFETs. The qualitative and quantitative analyses show that the output onset behavior in line-tunneling TFETs strongly depends on the bandgap because the roles of two factors, including the incident electron number and tunneling probability, in determining the variation of tunneling current under increasing drain voltage change oppositely when varying the bandgap. Particularly, the superlinear onset in line-tunneling TFETs can be effectively suppressed to reduce the saturation drain voltage by using low-bandgap semiconductors. Together with the advantages in on-current and subthreshold swing as shown previously, the significant superiority in output characteristic makes the use of low-bandgap materials to be an efficient approach for simultaneously enhancing the device and circuit performances of advanced line-tunneling TFETs.
format Journal article
author Chun-Hsing Shih
Nguyễn, Đăng Chiến
author_facet Chun-Hsing Shih
Nguyễn, Đăng Chiến
author_sort Chun-Hsing Shih
title Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
title_short Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
title_full Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
title_fullStr Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
title_full_unstemmed Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
title_sort bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors
publishDate 2023
url https://scholar.dlu.edu.vn/handle/123456789/2075
_version_ 1785973035084283904
spelling oai:scholar.dlu.edu.vn:123456789-20752023-12-13T04:20:54Z Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors Chun-Hsing Shih Nguyễn, Đăng Chiến Superlinear onset output characteristic line-tunneling band-to-band tunneling low-bandgap material tunnel field-effect transistor (TFET) The onset behavior of output characteristics in tunnel field-effect transistors (TFETs) importantly determines the performance of digital TFET-based circuits. In this paper, we analytically and numerically examine the dependence of the onset behavior of output characteristics on the bandgap of semiconductors in line-tunneling TFETs. The qualitative and quantitative analyses show that the output onset behavior in line-tunneling TFETs strongly depends on the bandgap because the roles of two factors, including the incident electron number and tunneling probability, in determining the variation of tunneling current under increasing drain voltage change oppositely when varying the bandgap. Particularly, the superlinear onset in line-tunneling TFETs can be effectively suppressed to reduce the saturation drain voltage by using low-bandgap semiconductors. Together with the advantages in on-current and subthreshold swing as shown previously, the significant superiority in output characteristic makes the use of low-bandgap materials to be an efficient approach for simultaneously enhancing the device and circuit performances of advanced line-tunneling TFETs. 16 3 696-703 2023-04-28T09:26:05Z 2023-04-28T09:26:05Z 2017 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2075 10.1007/s10825-017-1020-9 en Vietnam National Foundation for Science and Technology Development (NAFOSTED) Journal of Computational Electronics 1569-8025 103.02-2015.58 [1] Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28, 743-745 (2007) [2] Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337 (2011) [3] Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196905 (2004) [4] Kane, E.O.: Theory of tunneling. J Appl Phys 31, 83-91 (1961) [5] Zhang, Q., Zhao, W., Seabaugh, S.A.: Low-subthreshold swing tunnel transistors. IEEE Electron Device Lett. 27, 297-300 (2006) [6] Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54, 1725-1733 (2007) [7] Krishnamohan, T., Donghyun, K., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope. In: IEDM Tech. Dig., pp. 1-3 (2008) [8] Nayfeh, O.M., Hoyt, J.L., Antoniadis, D.A.: Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Trans. Electron Devices 56, 2264-2269 (2009) [9] Chien, N.D., Shih, C.-H., Vinh, L.T.: Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach. J Appl Phys 114, 094507 (2013) [Erratum. 114, 189901 (2013)] [10] Wang, P.-Y., Tsui, B.-Y.: Band engineering to improve average subthreshold swing by suppressing low electric field band-to-band tunneling with epitaxial tunnel layer tunnel FET structure. IEEE Trans. Nanotechnol. 15, 74-79 (2016) [11] Chen, S., Huang, Q., Huang, R.: Source doping profile design for Si and Ge tunnel FET. ECS Trans. 60, 91-96 (2014) [12] Chien, N.D., Shih, C.-H.: Oxide thickness-dependent effects of source doping profile on the performance of single- and double-gate tunnel field-effect transistors. Superlattices and Microstructures 102, 284-299 (2017) [13] Shih, C.-H., Chien, N.D.: Design and modeling of line-tunneling field-effect transistors using low-bandgap semiconductors. IEEE Trans. Electron Devices 61, 1907-1913 (2014) [14] Pal, A., Sachid, A.B., Gossner, H., Rao, R.: Insights into the design and optimization of tunnel-FET devices and circuits. IEEE Trans. Electron Devices 58, 1045-1053 (2011) [15] Saripalli, V., Datta, S., Narayanan, V., Kulkarni, J.P.: Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design. In: IEEE/ACM Int. Sym. on Nanoscale Architectures, pp. 45-53 (2011) [16] Esseni, D., Guglielmini, M., Kapidani, B., Rollo, T., Alioto, M.: Tunnel FETs for ultralow voltage digital VLSI circuits: part I - device-circuit interaction and evaluation at device level. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 2488-2498 (2014) [17] Dagtekin, N., Ionescu A.M.: Impact of super-linear onset, off-region due to uni-directional conductance and dominant CGD on performance of TFET-based circuits. IEEE J. Electron Devices Soc. 3, 233-239 (2015) [18] Michielis, M.D., Lattanzio, L., Ionescu, A.M.: Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Devices Lett. 33, 1523-1525 (2012) [19] Verhulst, A.S., Leonelli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110, 024510 (2011) [20] Rajamohanan, B., Mohata, D., Ali, A., Datta S.: Insight into the output characteristics of III-V tunneling field effect transistors. Appl. Phys. Lett. 102, 092105 (2013) [21] Vandenberghe, W.G., Verhulst, A.S., Kao, K.-H., Meyer, K.D., Sorée, B., Magnus, W., Groeseneken, G.: A model determining optimal doping concentration and material’s band gap of tunnel field-effect transistors. Appl. Phys. Lett. 100, 193509 (2012) [22] Wu, C., Huang, R., Huang, Q., Wang, J., Wang Y.: Design guideline for complementary heterostructure tunnel FETs with steep slope and improved output behavior. IEEE Electron Devices Lett. 37, 20-23 (2016) [23] Li, W., Sharmin, S., Ilatikhameneh, H., Rahman, R., Lu, Y., Wang, J., Yan, X., Seabaugh, A., Klimeck, G., Jena, D., Fay, P.: Polarization-engineered III-nitride heterojunction tunnel field-effect transistors. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 28-34 (2015) [24] Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.-C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103, 104504 (2008) [25] Synopsys MEDICI User’s Manual. Synopsys Inc. CA: Mountain View (2010) [26] Levinshtein, M., Rumyantsev, S., Shur, M.: Handbook Series on Semiconductor Parameters Vol. 2, World Scientific (1999) [27] Jain, S.C., McGregor, J.M., Roulston, D.J.: Band‐gap narrowing in novel III‐V semiconductors. J. Appl. Phys. 68, 3747 (1990) [28] Shih, C.-H., Chien, N.D.: Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors. J. Appl. Phys. 115, 014507 (2014) [29] Moll, J.L.: Physics of Semiconductors, New York (1970) [30] Leonelli, D., Anne Vandooren, A., Rooyackers, R., Verhulst A.S., Gendt, S.D., Heyns, M.M., Groeseneken, G.: Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width. Jpn. J. Appl. Phys. 49, 04DC10 (2010) [31] Sun, Z., Zhang, L., Zhang, J., Yu, Z.: A one-piece compact model for tunneling FETs. In: Int. Conf. on Solid-State and Integrated Circuit Tech., pp. 1-3 (2014) [32] Hurkx, G.A.M.: On the modelling of tunnelling currents in reverse-biased p-n junctions. Solid-State Electron. 32, 665-668 (1989)