Parallel algorithms of random forests for classifying very large datasets

The random forests algorithm proposed by Breiman is an ensemble-based approach with very high accuracy. The learning and classification tasks of a set of decision trees take a lot of time, make it intractable when dealing with ve ry large datasets. There is a need to scale up the random forests a...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autori principali: Do, Thanh Nghi, Pham, Nguyen Khang
Natura: Articolo
Lingua:English
Pubblicazione: Trường Đại học Đà Lạt 2014
Soggetti:
Accesso online:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/37523
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descrizione
Riassunto:The random forests algorithm proposed by Breiman is an ensemble-based approach with very high accuracy. The learning and classification tasks of a set of decision trees take a lot of time, make it intractable when dealing with ve ry large datasets. There is a need to scale up the random forests algorithm to handle massive datasets. We propose parallel algorithms of random forests to take into account the benefits of Grids computing. These algorithms improve training and classification time compared with the original ones. The experimental results on large datasets including Forest cover type, KDD Cup 1999, Connect-4 from the UCI data repository showed that the training and classification time of parallel algorithms are significantly reduced.