Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance
Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belongin...
Đã lưu trong:
Những tác giả chính: | , , , , , , |
---|---|
Định dạng: | Research report |
Ngôn ngữ: | Vietnamese |
Được phát hành: |
Multidisciplinary Digital Publishing Institute
2022
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/999 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-999 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
Vietnamese |
topic |
Salmonella; swine; gastric acid resistance; virulence genes; antimicrobial resistance |
spellingShingle |
Salmonella; swine; gastric acid resistance; virulence genes; antimicrobial resistance Thao, Pham Thi Thanh Hai Nguyen Thi Fabrizio Bertelloni Barbara Turchi Filippo Fratini Valentina Virginia Ebani Domenico Cerri Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
description |
Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent
typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belonging to 16 different serovars were analyzed for gastric acid environment resistance, presence of virulence genes (mgtC, rhuM, pipB, sopB, spvRBC, gipA, sodCI, sopE), antimicrobial resistance and presence of antimicrobial resistance genes (blaTEM, blaPSE-1, aadA1, aadA2, aphA1-lab, strA-strB,
tetA, tetB, tetC, tetG, sul1, sul2, sul3). A percentage of 44.83% of strains showed constitutive and inducible gastric acid resistance, whereas 37.93% of strains became resistant only after induction. The genes sopB, pipB and mgtC were the most often detected, with 79.31%, 48.28% and 37.93% of positive strains, respectively. Salmonella virulence plasmid genes were detected in a S. enterica sup. houtenae ser. 40:z4,z23:-strain. Fifteen different virulence profiles were identified: one isolate (ser. Typhimurium) was positive for 6 genes, and 6 isolates (3 ser. Typhimurium, 2 ser. Typhimurium monophasic variant and 1 ser. Choleraesuis) scored positive for 5 genes. None of the isolates resulted resistant to cefotaxime and ciprofloxacin, while all isolates were susceptible to ceftazidime, colistin and gentamycin. Many strains were resistant to sulfonamide (75.86%), tetracycline (51.72%), streptomycin (48.28%) and ampicillin (31.03%). Twenty different resisto-types were identified. Six strains (4 ser. Typhimurium, 1 ser. Derby and 1 ser. Typhimurium monophasic variant) showed the ASSuT profile. Most detected resistance genes sul2 (34.48%), tetA (27.58%) and strA-strB (27.58%). Great variability was observed in analyzed strains. S. ser. Typhimurium was confirmed as one of the most virulent serovars. T |
format |
Research report |
author |
Thao, Pham Thi Thanh Hai Nguyen Thi Fabrizio Bertelloni Barbara Turchi Filippo Fratini Valentina Virginia Ebani Domenico Cerri |
author_facet |
Thao, Pham Thi Thanh Hai Nguyen Thi Fabrizio Bertelloni Barbara Turchi Filippo Fratini Valentina Virginia Ebani Domenico Cerri |
author_sort |
Thao, Pham Thi Thanh |
title |
Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
title_short |
Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
title_full |
Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
title_fullStr |
Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
title_full_unstemmed |
Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance |
title_sort |
characterization of salmonella spp. isolates from swine: virulence and antimicrobial resistance |
publisher |
Multidisciplinary Digital Publishing Institute |
publishDate |
2022 |
url |
http://scholar.dlu.edu.vn/handle/123456789/999 |
_version_ |
1768305945401622528 |
spelling |
oai:scholar.dlu.edu.vn:123456789-9992022-09-14T18:40:31Z Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance Thao, Pham Thi Thanh Hai Nguyen Thi Fabrizio Bertelloni Barbara Turchi Filippo Fratini Valentina Virginia Ebani Domenico Cerri Salmonella; swine; gastric acid resistance; virulence genes; antimicrobial resistance Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belonging to 16 different serovars were analyzed for gastric acid environment resistance, presence of virulence genes (mgtC, rhuM, pipB, sopB, spvRBC, gipA, sodCI, sopE), antimicrobial resistance and presence of antimicrobial resistance genes (blaTEM, blaPSE-1, aadA1, aadA2, aphA1-lab, strA-strB, tetA, tetB, tetC, tetG, sul1, sul2, sul3). A percentage of 44.83% of strains showed constitutive and inducible gastric acid resistance, whereas 37.93% of strains became resistant only after induction. The genes sopB, pipB and mgtC were the most often detected, with 79.31%, 48.28% and 37.93% of positive strains, respectively. Salmonella virulence plasmid genes were detected in a S. enterica sup. houtenae ser. 40:z4,z23:-strain. Fifteen different virulence profiles were identified: one isolate (ser. Typhimurium) was positive for 6 genes, and 6 isolates (3 ser. Typhimurium, 2 ser. Typhimurium monophasic variant and 1 ser. Choleraesuis) scored positive for 5 genes. None of the isolates resulted resistant to cefotaxime and ciprofloxacin, while all isolates were susceptible to ceftazidime, colistin and gentamycin. Many strains were resistant to sulfonamide (75.86%), tetracycline (51.72%), streptomycin (48.28%) and ampicillin (31.03%). Twenty different resisto-types were identified. Six strains (4 ser. Typhimurium, 1 ser. Derby and 1 ser. Typhimurium monophasic variant) showed the ASSuT profile. Most detected resistance genes sul2 (34.48%), tetA (27.58%) and strA-strB (27.58%). Great variability was observed in analyzed strains. S. ser. Typhimurium was confirmed as one of the most virulent serovars. T 10 2418 1-14 2022-09-14T18:40:31Z 2022-09-14T18:40:31Z 2020 Research report Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/999 vi Animals 1. EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 276. 2. Denis, M.; Houard, E.; Fablet, A.; Rouxel, S.; Salvat, G. Distribution of serotypes and genotypes of Salmonella enterica species in French pig production. Vet. Rec. 2013, 173, 370. [CrossRef] [PubMed] 3. Audia, J.P.; Webb, C.C.; Foster, J.W. Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 2001, 291, 97–106. [CrossRef] [PubMed] 4. Santos, R.L.; Tsolis, R.M.; Bäumler, A.J.; Adams, L.G. Pathogenesis of Salmonella-induced enteritis. Braz. J. Med. Biol. Res. 2003, 36, 3–12. [CrossRef] 5. Hensel, M. Evolution of pathogenicity islands of Salmonella enterica. Int. J. Med. Microbiol. 2004, 294, 95–102. [CrossRef] [PubMed] 6. Gerlach, R.G.; Hensel, M. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica. Berl. Münch. Tierärztl. Wochenschr. 2007, 120, 317–327. [PubMed] 7. Stanley, T.L.; Ellermeier, C.D.; Slauch, J.M. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer’s patches. J. Bacteriol. 2000, 182, 4406–4413. [CrossRef] 8. Ehrbar, K.; Hardt, W.-D. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect. Genet. Evol. 2005, 5, 1–9. [CrossRef] 9. Guiney, D.G.; Fierer, J. The role of the spv genes in Salmonella pathogenesis. Front. Microbiol. 2011, 2, 129. [CrossRef] 10. Rushing, M.D.; Slauch, J.M. Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect Salmonella enterica serovar Typhimurium from phagocytic superoxide. Mol. Microbiol. 2011, 82, 952–963. [CrossRef] 11. Brunelle, B.W.; Bearson, B.L.; Bearson, S.M.D. Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Front. Microbiol. 2015, 5, 801. [CrossRef] [PubMed] 12. EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 2017, 15, 4694. 13. EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. 14. Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418. [CrossRef] 15. McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial resistance genes, cassettes, and plasmids present in salmonella enterica associated with United States food animals. Front. Microbiol. 2019, 10, 832. [CrossRef] 16. Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [CrossRef] 17. Kérouanton, A.; Marault, M.; Lailler, R.; Weill, F.-X.; Feurer, C.; Espié, E.; Brisabois, A. Pulsed-field gel electrophoresis subtyping database for foodborne Salmonella enterica serotype discrimination. Foodborne Pathog. Dis. 2007, 4, 293–303. [CrossRef] 18. Xia, X.; Zhao, S.; Smith, A.; McEvoy, J.; Meng, J.; Bhagwat, A.A. Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties. Int. J. Food Microbiol. 2009, 129, 93–98. [CrossRef] 19. Skyberg, J.A.; Logue, C.M.; Nolan, L.K. Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Dis. 2006, 50, 77–81. [CrossRef] 20. Karasova, D.; Havlickova, H.; Sisak, F.; Rychlik, I. Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet. Microbiol. 2009, 139, 304–309. [CrossRef] 21. Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J.; et al. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [CrossRef] [PubMed] 22. Paban Bhowmick, P.; Devegowda, D.; Karunasagar, I. Virulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India. Res. Artic. Biotechnol. Bioinf. Bioeng. 2011, 1, 63–69. 23. Parvathi, A.; Vijayan, J.; Murali, G.; Chandran, P. Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical Salmonella enterica from Cochin, India. Curr. Microbiol. 2011, 62, 21–26. [CrossRef] [PubMed] 24. Clinical and Laboratory Standards Institute (CLSI). M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. 25. CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. 26. Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [CrossRef] [PubMed] 27. Dahshan, H.; Shahada, F.; Chuma, T.; Moriki, H.; Okamoto, K. Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle. Vet. Microbiol. 2010, 145, 76–83. [CrossRef] [PubMed] 28. Benacer, D.; Thong, K.L.; Watanabe, H.; Devi Puthucheary, S. Characterization of drug-resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes, and PFGE. J. Microbiol. Biotechnol. 2010, 20, 1042–1052. [PubMed] 29. Barlozzari, G.; Franco, A.; Macrì, G.; Lorenzetti, S.; Maggiori, F.; Dottarelli, S.; Maurelli, M.; Di Giannatale, E.; Tittarelli, M.; Battisti, A.; et al. First report of Brucella suis biovar 2 in a semi free-range pig farm, Italy. Vet. Ital. 2015, 51, 151–154. 30. Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M.; Rojo-Bezares, B.; Rodrigues, J.; Torres, C. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb. Drug Resist. 2008, 14, 71–77. [CrossRef] 31. Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [CrossRef] 32. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. 33. Bonardi, S.; Bassi, L.; Brindani, F.; D’Incau, M.; Barco, L.; Carra, E.; Pongolini, S. Prevalence, characterization and antimicrobial susceptibility of Salmonella enterica and Yersinia enterocolitica in pigs at slaughter in Italy. Int. J. Food Microbiol. 2013, 163, 248–257. [CrossRef] [PubMed] 34. Bonardi, S.; Alpigiani, I.; Bruini, I.; Barilli, E.; Brindani, F.; Morganti, M.; Cavallini, P.; Bolzoni, L.; Pongolini, S. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy. Int. J. Food Microbiol. 2016, 218, 44–50. [CrossRef] [PubMed] 35. Torrieri, E.; Russo, F.; Di Monaco, R.; Cavella, S.; Villani, F.; Masi, F. Shelf life prediction of fresh Italian pork sausage modified atmosphere packed. Food Sci. Technol. Int. 2011, 17, 223–232. [CrossRef] [PubMed] 36. Rahman, H. Prevalence & phenotypic expression of sopB gene among clinical isolates of Salmonella enterica. Indian J. Med. Res. 2006, 123, 83–88. 37. Núñez-Hernández, C.; Alonso, A.; Pucciarelli, M.G.; Casadesús, J.; García-del Portillo, F. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts. Infect. Immun. 2014, 82, 221–232. [CrossRef] 38. Lee, J.-W.; Lee, E.-J. Regulation and function of the Salmonella MgtC virulence protein. J. Microbiol. 2015, 53, 667–672. [CrossRef] 39. Zou, W.; Al-Khaldi, S.F.; Branham, W.S.; Han, T.; Fuscoe, J.C.; Han, J.; Foley, S.L.; Xu, J.; Fang, H.; Cerniglia, C.E.; et al. Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J. Infect. Dev. Ctries. 2011, 5, 94–105. [CrossRef] 40. Bertelloni, F.; Tosi, G.; Massi, P.; Fiorentini, L.; Parigi, M.; Cerri, D.; Ebani, V.V. Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pac. J. Trop. Med. 2017, 10, 1161–1166. [CrossRef] 41. Fois, F.; Piras, F.; Torpdahl, M.; Mazza, R.; Consolati, S.G.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Occurrence, characterization, and antimicrobial susceptibility of Salmonella enterica in slaughtered pigs in sardinia. J. Food Sci. 2017, 82, 969–976. [CrossRef] 42. Akiyama, T.; Presedo, J.; Khan, A.A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int. J. Antimicrob. Agents 2013, 42, 133–140. [CrossRef] 43. Calayag, A.M.B.; Paclibare, P.A.P.; Santos, P.D.M.; Bautista, C.A.C.; Rivera, W.L. Molecular characterization and antimicrobial resistance of Salmonella enterica from swine slaughtered in two different types of Philippine abattoir. Food Microbiol. 2017, 65, 51–56. [CrossRef] [PubMed] 44. Maka, L.; Ma´ckiw, E.; Sciezy´nska, H.; Modzelewska, M.; Popowska, M. Resistance to sulfonamides and ´ dissemination of sul genes among salmonella spp. isolated from food in Poland. Foodborne Pathog. Dis. 2015, 12, 383–389. [CrossRef] [PubMed] 45. Antunes, P.; Machado, J.; Sousa, J.C.; Peixe, L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 2005, 49, 836–839. [CrossRef] [PubMed] 46. Wu, S.; Dalsgaard, A.; Hammerum, A.M.; Porsbo, L.J.; Jensen, L.B. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet. Scand. 2010, 52, 47. [CrossRef] 47. Pezzella, C.; Ricci, A.; DiGiannatale, E.; Luzzi, I.; Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 2004, 48, 903–908. [CrossRef] 48. Dionisi, A.M.; Lucarelli, C.; Benedetti, I.; Owczarek, S.; Luzzi, I. Molecular characterisation of multidrug-resistant Salmonella enterica serotype infantis from humans, animals and the environment in Italy. Int. J. Antimicrob. Agents 2011, 38, 384–389. [CrossRef] 49. Argüello, H.; Guerra, B.; Rodríguez, I.; Rubio, P.; Carvajal, A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in salmonella enterica spp., multidrug-resistant isolates from pigs. Genes (Basel) 2018, 9, 256. [CrossRef] 50. Kaczorek-Łukowska, E.; Sowi´nska, P.; Franaszek, A.; Dziewulska, D.; Małaczewska, J.; Stenzel, T. Can domestic pigeon be a potential carrier of zoonotic Salmonella? Transbound. Emerg. Dis. 2020. [CrossRef] Multidisciplinary Digital Publishing Institute |