Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors
Owing to the breakthrough of the kT/q thermal limit of 60 mV/decade subthreshold swing at room temperature, tunnel field-effect transistors (TFETs) have demonstrated their potential for energy-efficient applications. Based on the clarified physical properties of band-to-band tunneling, this study de...
Đã lưu trong:
Những tác giả chính: | , , |
---|---|
Định dạng: | Conference paper |
Ngôn ngữ: | English |
Được phát hành: |
Việt Nam
2024
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3309 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3309 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Low-bandgap semiconductor low-power application line-tunneling band-to-band tunneling tunnel field-effect transistor (TFET) |
spellingShingle |
Low-bandgap semiconductor low-power application line-tunneling band-to-band tunneling tunnel field-effect transistor (TFET) Nguyễn, Đăng Chiến Luu The Vinh Chun-Hsing Shih Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
description |
Owing to the breakthrough of the kT/q thermal limit of 60 mV/decade subthreshold swing at room temperature, tunnel field-effect transistors (TFETs) have demonstrated their potential for energy-efficient applications. Based on the clarified physical properties of band-to-band tunneling, this study demonstrates, both analytically and numerically, the suitability of low-bandgap semiconductors for low-power applications of TFETs. By using low-bandgap materials, the on-current is considerably enhanced due to the decreased tunnel barriers. The subthreshold swing is also significantly improved because of the premature transition of tunneling current from the quasi-exponential to linear regime. The appropriate operating voltage depends on the associated bandgap of semiconductors, and must be less than the bandgap voltage (Eg/q) to control the off-leakage in TFET devices. Applying low-bandgap materials in the line-tunneling TFET structure exhibits an excellent combination to optimize the on-off switching at low supply voltages. |
format |
Conference paper |
author |
Nguyễn, Đăng Chiến Luu The Vinh Chun-Hsing Shih |
author_facet |
Nguyễn, Đăng Chiến Luu The Vinh Chun-Hsing Shih |
author_sort |
Nguyễn, Đăng Chiến |
title |
Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
title_short |
Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
title_full |
Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
title_fullStr |
Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
title_full_unstemmed |
Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
title_sort |
suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors |
publisher |
Việt Nam |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3309 |
_version_ |
1798256986899349504 |
spelling |
oai:scholar.dlu.edu.vn:123456789-33092024-03-02T10:19:32Z Suitability of low-bandgap semiconductors for energy-efficient tunnel-field effect transistors Nguyễn, Đăng Chiến Luu The Vinh Chun-Hsing Shih Low-bandgap semiconductor low-power application line-tunneling band-to-band tunneling tunnel field-effect transistor (TFET) Owing to the breakthrough of the kT/q thermal limit of 60 mV/decade subthreshold swing at room temperature, tunnel field-effect transistors (TFETs) have demonstrated their potential for energy-efficient applications. Based on the clarified physical properties of band-to-band tunneling, this study demonstrates, both analytically and numerically, the suitability of low-bandgap semiconductors for low-power applications of TFETs. By using low-bandgap materials, the on-current is considerably enhanced due to the decreased tunnel barriers. The subthreshold swing is also significantly improved because of the premature transition of tunneling current from the quasi-exponential to linear regime. The appropriate operating voltage depends on the associated bandgap of semiconductors, and must be less than the bandgap voltage (Eg/q) to control the off-leakage in TFET devices. Applying low-bandgap materials in the line-tunneling TFET structure exhibits an excellent combination to optimize the on-off switching at low supply voltages. 199-205 2024-03-02T10:19:25Z 2024-03-02T10:19:25Z 2014 Conference paper Bài báo đăng trên KYHT trong và ngoài nước (không có ISBN) https://scholar.dlu.edu.vn/handle/123456789/3309 en The 3rd Solid State Systems Symposium – VLSIs and Semiconductor Related Technologies (4S), and The 17th International Conference on Analog VLSI Circuits (AVIC) [1] Q. Zhang, W. Zhao, and S. A. Seabaugh, “Low-subthreshold swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297-300, Apr. 2006. [2] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. [3] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, “A novel Si-Tunnel FET based SRAM design for ultra-low-power 0.3V VDD applications”, in Proceedings of 15th Asia and South Pacific Design Automation Conference (ASP-DAC, 2010), pp. 181-186. [4] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, Nov. 2011. [5] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical model for a tunnel field-effect transistor,” in Proceedings of IEEE Mediterranean Electrotechnical Conference (MELECON), 2008, pp. 923-928. [6] B. Ghosh and M. W. Akram, “Junctionless tunnel field effect transistor,” IEEE Electron Device Lett., vol 34, no. 5, pp. 584-586, May 2013. [7] A. M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A. S. Verhulst, K.-H. Kao, C. Huyghebaert, G. Groeseneken, V. R. Rao, K. K. Bhuwalka, M. M. Heyns, N. Collaert, and A. V.-Y. Thean, “Fabrication and analysis of a Si/Si0.55Ge0.45 heterojunction line tunnel FET,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 707-715, Mar. 2014. [8] W. Wang, P.-F. Wang, C.-M. Zhang, X. Lin, X.-Y. Liu, Q.-Q. Sun, P. Zhou, and D. W. Zhang, “Design of U-shape channel tunnel FETs with SiGe source regions,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 193-197, Jan. 2014. [9] Boucart and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid-State Electron., vol. 51, no. 11-12, pp. 1500-1507, Nov.-Dec. 2007. [10] T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope,” in IEDM Tech. Dig., 2008, pp. 1-3. [11] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, “Strained-Si1-xGex/Si Band-to-Band Tunneling Transistors: Impact of Tunnel Junction Germanium Composition and Doping Concentration on Switching Behavior,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2264-2269, Sep. 2009. [12] N. D. Chien, C.-H. Shih, and L. T. Vinh, “Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach,” J. Appl. Phys., vol. 114, no. 9, pp. 094507-094507-6, Sep. 2013. [13] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 31, no. 1, pp. 83-91, 1961. [14] G. A. M. Hurkx, “On the modelling of tunnelling currents in reverse-biased p-n junctions,” Solid-State Electron., vol. 32, no. 8, pp. 665-668, Aug. 1989. [15] W. Vandenberghe, B. Soree, W. Magnus, and G. Groeseneken, “Zener tunneling in semiconductors under nonuniform electric fields,” J. Appl. Phys., vol. 107, pp. 054520-054520-7, Mar. 2010. [16] J. Z. Peng, S. Haddad, J. Hsu, J. Chen, S. Longcor, and C. Chang, “Accurate simulation on band-to-band tunneling induced leakage current using a global non-local model,” in Proceedings of International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 1995, p. 141. [17] W. M. Reddick and G. A. J. Amaratunga, “Silicon surface tunneling transistor,” Appl. Phys. Lett., vol. 67, no. 4, pp. 494-496, May 1995. [18] C.-H. Shih and N. D. Chien, “Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions,” J. Appl. Phys., vol. 113, no. 13, pp. 134507-134507-7, Apr. 2013. [19] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [20] C. Hu, “Green transistor as a solution to the IC power crisis,” in 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), 2008, pp. 16-20. [21] M. Luisier and G. Klimeck, “Performance comparisons of tunneling field-effect transistors made of InSb, carbon, and GaSb-InAs broken gap heterostructures,” in IEDM Tech. Dig., 2009, pp. 913-916. [22] A. C. Seabaugh and Q. Zhang, “Low voltage tunnel transistors for beyond CMOS logic,” Proceedings of the IEEE, vol. 98, pp. 2095-2110, Dec. 2010. [23] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates”, Appl. Phys. Lett., vol. 98, no. 11, p. 113105, Mar. 2011. [24] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Direct and indirect band-to-band tunneling in germanium-based TFETs,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. [25] M. S. Tyagi, “Determination of effective mass and the pair production energy for electrons in germanium from Zener diode characteristics,” Jpn. J. Appl. Phys., vol. 12, no. 1, pp. 106-108, Jan. 1973. [26] J. L. Moll, “Physics of Semiconductors,” McGraw-Hill, New York, 1970, p. 252. [27] D. Pawlik, B. Romanczyk, P. Thomas, S. Rommel, M. Edirisooriya, R. Contreras-Guerrero, R. Droopad, W.-Y. Loh, M. H. Wong, K. Majumdar, W.-E Wang, P. D. Kirsch, and R. Jammy, “Benchmarking and improving III-V Esaki diode performance with a record 2.2 MA/cm2 peak current density to enhance TFET drive current,” in IEDM Tech. Dig., 2012, pp. 812-814. [28] J.-Y. Li and J. C. Sturm, “The effect of germanium fraction on high-field band-to-band tunneling SiGe junctions in forward and reverse biases,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2479-2484, Aug. 2013. [29] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett., vol. 78, no. 21, pp. 3337–3339, May 2001. [30] A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys., vol. 107, no. 2, 024518, Jan. 2010. [31] D. Verreck, A. S. Verhulst, K.-H. Kao, W. G. Vandenberghe, K. D. Meyer, and G. Groeseneken, “Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2128-2134, Jul. 2013. [32] A. S. Verhulst, D. Leonelli, R. Rooyackers, and G. Groeseneken, “Drain voltage dependent analytical model of tunnel field-effect transistors,” J. Appl. Phys., vol. 110, no. 2, p. 024510, Jul. 2011. [33] C.-H. Shih and J.-S. Wang, “Threshold voltage of ultrathin gate-insulator MOSFETs,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 278-281, Mar. 2009. Việt Nam |