A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket
Low bandgap and line tunneling techniques have demonstrated the most effectiveness in enhancing the on-current of tunnel field-effect transistors (TFETs). This study examines the mechanisms and designs of channel-buried oxide and laterally doped pocket for a very low bandgap line-TFET. Numerical TCA...
Đã lưu trong:
Những tác giả chính: | , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Trường Đại học Đà Lạt
2024
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3589 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3589 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
band-to-band tunneling Channel-buried oxide Doping pocket Line tunneling Low bandgap TFET |
spellingShingle |
band-to-band tunneling Channel-buried oxide Doping pocket Line tunneling Low bandgap TFET Bui Huu Thai Chun-Hsing Shih Nguyễn, Đăng Chiến A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
description |
Low bandgap and line tunneling techniques have demonstrated the most effectiveness in enhancing the on-current of tunnel field-effect transistors (TFETs). This study examines the mechanisms and designs of channel-buried oxide and laterally doped pocket for a very low bandgap line-TFET. Numerical TCAD simulations show that the channel-buried oxide is needed to prevent the off-state lateral tunneling while still maintaining the on-state vertical tunneling. The buried oxide pillar should be high so that the channel is thin about 10 nm thickness to completely suppress the tunneling leakage. The dopant pocket is required to trigger the line tunneling earlier than the point tunneling to improve the subthreshold swing and on-current. Increasing the pocket concentration or decreasing the pocket thickness both cause an increase not only in the vertical band bending but also in the effective gate-insulator thickness. Because of the trade-off between these two operation parameters, for a given thickness/concentration, there exists an optimal concentration/thickness of the pocket to maximize the on-current. The on-current is optimized using a heavy and thin pocket for which the band bending is maximized and the effective gate-insulator thickness is minimized. For the fabrication feasibility using existing doping techniques, the pocket concentration and thickness should be respectively 1019 cm-3 and 4 nm to maximize the on-current of the InAs line-TFET. |
format |
Journal article |
author |
Bui Huu Thai Chun-Hsing Shih Nguyễn, Đăng Chiến |
author_facet |
Bui Huu Thai Chun-Hsing Shih Nguyễn, Đăng Chiến |
author_sort |
Bui Huu Thai |
title |
A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
title_short |
A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
title_full |
A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
title_fullStr |
A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
title_full_unstemmed |
A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
title_sort |
very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket |
publisher |
Trường Đại học Đà Lạt |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3589 |
_version_ |
1813142642851053568 |
spelling |
oai:scholar.dlu.edu.vn:123456789-35892024-09-26T13:00:49Z A very low bandgap line-tunnel field effect transistor with channel-buried oxide and laterally doped pocket Bui Huu Thai Chun-Hsing Shih Nguyễn, Đăng Chiến band-to-band tunneling Channel-buried oxide Doping pocket Line tunneling Low bandgap TFET Low bandgap and line tunneling techniques have demonstrated the most effectiveness in enhancing the on-current of tunnel field-effect transistors (TFETs). This study examines the mechanisms and designs of channel-buried oxide and laterally doped pocket for a very low bandgap line-TFET. Numerical TCAD simulations show that the channel-buried oxide is needed to prevent the off-state lateral tunneling while still maintaining the on-state vertical tunneling. The buried oxide pillar should be high so that the channel is thin about 10 nm thickness to completely suppress the tunneling leakage. The dopant pocket is required to trigger the line tunneling earlier than the point tunneling to improve the subthreshold swing and on-current. Increasing the pocket concentration or decreasing the pocket thickness both cause an increase not only in the vertical band bending but also in the effective gate-insulator thickness. Because of the trade-off between these two operation parameters, for a given thickness/concentration, there exists an optimal concentration/thickness of the pocket to maximize the on-current. The on-current is optimized using a heavy and thin pocket for which the band bending is maximized and the effective gate-insulator thickness is minimized. For the fabrication feasibility using existing doping techniques, the pocket concentration and thickness should be respectively 1019 cm-3 and 4 nm to maximize the on-current of the InAs line-TFET. 14 3S 61-75 2024-09-26T12:59:15Z 2024-09-26T12:59:15Z 2024 Journal article Bài báo đăng trên tạp chí trong nước (có ISSN), bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3589 10.37569/DalatUniversity.14.3S.1313(2024) en Nghiên cứu tối ưu hóa các tham số của thân linh kiện nâng cao đặc tính điện của các transistor hiệu ứng trường xuyên hầm (TFET) Dalat University Journal of Science 0866-787X B2023-DLA-03 Ahn, T. J. & Yu, Y. S. (2018). Electrical characteristics of Ge/Si-based source pocket tunnel field-effect transistors, J. Nanosci. Nanotechnol., 18(9), 5887-5892. https://doi.org/10.1166/jnn.2018.15579 Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph. (2004). Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett., 93(19), 196905. https:// doi.org/10.1103/PhysRevLett.93.196805 Beneventi, G. B., Gnani, E., Gnudi, A., Reggiani, S., & Baccarani, G. (2015). Optimization of a pocketed dual-metal-gate TFET by means of TCAD simulations accounting for quantization-induced bandgap widening, IEEE Trans. Electron Devices, 62(1), 44-51. https://doi.org/10.1109/TED.2014.2371071 Biswas, A., Dan, S. S., Royer, C. L., Grabinski, W., & Ionescu, A. M. (2012). TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model, Microelectron. Eng., 98, 334-337. https://doi.org/10.1016/j.mee.2012. 07.077 Blaeser, S., Richter, S., Wirths, S., Trellenkamp, S., Buca, D., Zhao, Q. T., & Mantl, S. (2015, January 26-28). Experimental demonstration of planar SiGe on Si TFETs with counter doped pocket, Joint Int. EUROSOI Workshop and Int. Conf. on Ultimate Integration on Silicon, Bologna, Italy, 297-300. https://doi.org/10.1109/ ULIS.2015.7063832 Chaturvedi, P. & Goyal, N. (2012, March 14-17). Effect of gate dielectric thickness on gate leakage in tunnel field effect transistor, Int. Caribbean Conf. on Devices, Playa del Carmen, Mexico, pp. 1-4. https://doi.org/10.1109/ICCDCS.2012. 6238548 Cheng, W., Liang, R., Xu, G., Yu, G., Zhang, S., Yin, H., Zhao, C., Ren, T.-L., & Xu, J. (2020). Fabrication and characterization of a novel Si line tunneling TFET with high drive current, IEEE J. Electron Devices Soc., 8, 336-340. https://doi.org/10. 1109/JEDS.2020.2981974 Chien, N. D., Anh, D. T. K., & Shih, C.-H. (2017). Roles of gate-oxide thickness reduction in scaling bulk and thin-body tunnel field-effect transistors, Vietnam Journal of Science and Technology, 55(3), 316-323. https://doi.org/10.15625/ 2525-2518/55/3/8362 Chien, N. D., Anh, T. T. K., Chen, Y.-H., & Shih, C.-H. (2019). Device physics and design of symmetrically doped tunnel field-effect transistors, Microelectron. Eng., 216, 111061. https://doi.org/10.1016/j.mee.2019.111061 Chien, N. D., Shih, C.-H., Chen, Y.-H., & Thu, N. T. (2016, January 27-30). Increasing drain voltage of low-bandgap tunnel field-effect transistors by drain engineering, Int. Conf. on Elec., Info., and Comm., Danang, Vietnam, pp. 10-13. https://doi.org/ 10.1109/ELINFOCOM.2016.7562947 Chien, N. D., Thai, B. H., & Shih, C.-H. (2024). Thin-body effects in double-gate tunnel field-effect transistors, J. Phys. D: Appl. Phys., 57(21), 215301. https://doi.org/10. 1088/1361-6463/ad2ab1 Haq, S. U. & Sharma, V. K. (2023). Review of the Nanoscale FinFET device for the applications in nano-regime, Curr. Nanosci., 19(5), 651-662. https://doi.org/10. 2174/1573413719666221206122301 Ho, J. C., Ford, A. C., Chueh, Y.-L., Leu, P. W., Ergen, O., Takei, K., Smith, G., Majhi, P., Bennett, J., & Javey, A. (2009). Nanoscale doping of InAs via sulfur monolayers, Appl. Phys. Lett., 95(7), 072108. https://doi.org/10.1063/1.3205113 Ho, J. C., Yerushalmi, R., Jacobson, Z. A., Fan, Z., Alley, R. L., & Javey, A. (2008). Controlled nanoscale doping of semiconductors via molecular monolayers, Nat. Mater., 7(1), 62-67. https://doi.org/10.1038/nmat2058 Hurkx, G. A. M. (1989). On the modelling of tunnelling currents in reverse-biased p-n junctions, Solid-State Electron., 32(8), 665-668. https://doi.org/10.1016/0038-1101(89)90146-9 Ionescu, A. M. & Riel, H. (2011). Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, 329-337. https://doi.org/10.1038/nature10679 Jain, S. C., McGregor, J. M., & Roulston, D. J. (1990). Bandgap narrowing in novel III-V semiconductors, J. Appl. Phys., 68(7), 3747. http://dx.doi.org/10.1063/ 1.346291 Kane, E. O. (1961). Theory of tunneling, J. Appl. Phys., 32(1), 83-91. http://dx.doi.org/10. 1063/1.1735965 Kaniselvan, M. & Yoon, Y. (2021). Strain-tuning PtSe2 for high ON-current lateral tunnel field-effect transistors, Appl. Phys. Lett., 119(7), 073102. https://doi.org/10.1063/ 5.0053789 Kao, K.-H., Verhulst, A. S., Vandenberghe, W. G., Soree, B., Magnus, W., Leonelli, D., Groeseneken, G., & Meyer, K. D. (2012). Optimization of gate-on-source-only tunnel FETs with counter-doped pockets, IEEE Trans. Electron Devices, 59(8), 2070-2077. https://doi.org/10.1109/TED.2012.2200489 Kumari, N. A., Sreenivasulu, V. B., & Prithvi, P. (2023). Impact of scaling on nanosheet FET and CMOS circuit applications, ECS J. Solid State Sci. Technol., 12(3), 033001. https://doi.org/10.1149/2162-8777/acbcf2 Lin, Z., Chen, P., Ye, L., Yan, X., Dong, L., Zhang, S., Yang, Z., Peng, C., Wu, X., & Chen, J. (2020). Challenges and solutions of the TFET circuit design, IEEE Trans. Circuits Syst. I: Regul. Pap., 67(12), 4918-4931. https://doi.org/10.1109/TCSI. 2020.3010803 Mohata, D., Mookerjea, S., Agrawal, A., Li, Y., Mayer, T., Narayanan, V., Liu, A., Loubychev, D., Fastenau, J., & Datta, S. (2011). Experimental staggered-source and N+ pocket-doped channel III–V tunnel field-effect transistors and their scalabilities, Appl. Phys. Exp., 4(2), 024105. https://doi.org/10.1143/APEX.4. 024105 Palankovski, V., Kaiblinger-Grujin, G., & Selberherr, S. (1999). Study of dopant-dependent band gap narrowing in compound semiconductor devices, Mater. Sci. Eng. B, 66 (1-3), 46-49. https://doi.org/10.1016/S0921-5107(99)00118-X Saravanan, M. & Parthasarathy, E. (2023). Impact of pocket layer on linearity and analog/RF performance of inas-gasb vertical tunnel field‑effect transistor, J. Electron. Mater., 52, 2772–2779. https://doi.org/10.1007/s11664-023-10239-7 Schenk, A. (2023). Bandgap narrowing in zincblende III–V semiconductors: Finite-temperature full random-phase approximation and general analytical model, AIP Advances, 13(7), 070702. https://doi.org/10.1063/5.0149190 Shih, C.-H. & Chien, N. D. (2014a). Design and modeling of line-tunneling field-effect transistors using low-bandgap semiconductors, IEEE Trans. Electron Devices, 61(6), 1907-1913. https://doi.org/10.1109/TED.2014.2316217 Shih, C.-H. & Chien, N. D. (2014b). Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors, J. Appl. Phys., 115(4), 044501. https://doi.org/10.1063/1.4862335 Shih, C.-H., Chien, N. D., Tran, H.-D., & Chuan, P. V. (2020). Device physics and design of hetero-gate dielectric tunnel field-effect transistors with different low/high-k EOT ratios, Appl. Phys. A, 126, 66. https://doi.org/10.1007/s00339-019-3246-9 Synopsys Inc. (2020). Taurus Medici user guide, Version R-2020.09 Toh, E.-H., Wang, G. H., Samudra, G., & Yeo Y.-C. (2008). Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications, J. Appl. Phys., 103(10), 104504. https://doi.org/10.1063/1.2924413 Wang, X., Sun, Y., Liu, Z., Liu, Y., Li, X., & Shi, Y. (2022). Design optimization of nanotube tunnel field-efect transistor with bias-induced electron-hole bilayer, Silicon, 14, 9071–9082. https://doi.org/10.1007/s12633-022-01666-y Yuan, L.-D., Deng, H.-X., Li, S.-S., Wei, S.-H., & Luo, J.-W. (2018). Unified theory of direct or indirect band-gap nature of conventional semiconductors, Phys. Rev. B, 98, 245203. https://doi.org/10.1103/PhysRevB.98.245203 Yum, J. H., Shin, H. S., Hill, R., Oh, J., Lee, H. D., Mushinski, R. M., Hudnall, T. W., Bielawski, C. W., Banerjee, S. K., Loh, W. Y., Wang, W.-E., & Kirsch, P. (2012). A study of capping layers for sulfur monolayer doping on III-V junctions, Appl. Phys. Lett., 101(25), 253514. https://doi.org/10.1063/1.4772641 Trường Đại học Đà Lạt Việt Nam |