Short-channel effect and device design of extremely scaled tunnel field-effect transistors
For serving as ideal switching devices in future energy-efficient applications, scaling down the channel lengths of Tunnel-Field Effect Transistors (TFETs) is essential to follow the pace of Si-based CMOS technologies. This work elucidates the short-channel mechanisms and the role of the drain in ex...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/2082 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2082 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Short-Channel Effect Tunnel Field-Effect Transistor Device Design |
spellingShingle |
Short-Channel Effect Tunnel Field-Effect Transistor Device Design Nguyễn, Đăng Chiến Chun-Hsing Shih Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
description |
For serving as ideal switching devices in future energy-efficient applications, scaling down the channel lengths of Tunnel-Field Effect Transistors (TFETs) is essential to follow the pace of Si-based CMOS technologies. This work elucidates the short-channel mechanisms and the role of the drain in extremely-scaled TFETs. The scalability of TFETs depends strongly on the appropriately low drain concentration, whereas the capability of the drain for scaling relies on a sufficient drain region. The drain with a light concentration of 5×1017 cm-3 and a minimum length of 20nm enables 5nm TFETs to exhibit favorable on-off switching characteristics. In sub-20nm TFETs, the total drain and channel lengths must satisfy the minimum criteria of approximately 25nm to sustain reversely biased drain voltage of 0.7V. The asymmetric Si1-xGex source heterojunction is combined with the minimum drain design in 5nm TFETs to separately optimize the source- and drain-side tunnel junctions, generating ideal on-/off-currents and switching characteristics to serve as a promising design approach of sub-5nm TFETs. |
format |
Journal article |
author |
Nguyễn, Đăng Chiến Chun-Hsing Shih |
author_facet |
Nguyễn, Đăng Chiến Chun-Hsing Shih |
author_sort |
Nguyễn, Đăng Chiến |
title |
Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
title_short |
Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
title_full |
Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
title_fullStr |
Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
title_full_unstemmed |
Short-channel effect and device design of extremely scaled tunnel field-effect transistors |
title_sort |
short-channel effect and device design of extremely scaled tunnel field-effect transistors |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/2082 |
_version_ |
1785973038823505920 |
spelling |
oai:scholar.dlu.edu.vn:123456789-20822023-12-13T04:19:38Z Short-channel effect and device design of extremely scaled tunnel field-effect transistors Nguyễn, Đăng Chiến Chun-Hsing Shih Short-Channel Effect Tunnel Field-Effect Transistor Device Design For serving as ideal switching devices in future energy-efficient applications, scaling down the channel lengths of Tunnel-Field Effect Transistors (TFETs) is essential to follow the pace of Si-based CMOS technologies. This work elucidates the short-channel mechanisms and the role of the drain in extremely-scaled TFETs. The scalability of TFETs depends strongly on the appropriately low drain concentration, whereas the capability of the drain for scaling relies on a sufficient drain region. The drain with a light concentration of 5×1017 cm-3 and a minimum length of 20nm enables 5nm TFETs to exhibit favorable on-off switching characteristics. In sub-20nm TFETs, the total drain and channel lengths must satisfy the minimum criteria of approximately 25nm to sustain reversely biased drain voltage of 0.7V. The asymmetric Si1-xGex source heterojunction is combined with the minimum drain design in 5nm TFETs to separately optimize the source- and drain-side tunnel junctions, generating ideal on-/off-currents and switching characteristics to serve as a promising design approach of sub-5nm TFETs. 55 1 31-37 2023-04-28T12:12:13Z 2023-04-28T12:12:13Z 2015 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2082 10.1016/j.microrel.2014.09.028 en Microelectronics Reliability 0026-2714 [1] Q. Zhang, W. Zhao, and S. A. Seabaugh. Low-subthreshold swing tunnel transistors. IEEE Electron Device Lett. 2006; 27: 297-4. [2] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 2007; 28: 743-3. [3] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan. A novel Si-Tunnel FET based SRAM design for ultra-low-power 0.3V VDD applications. Proc. of 15th Asia and South Pacific Design Automation Conf. 2010; 181-6. [4] Dmitri E. Nikonov and Ian A. Young. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. of the IEEE. 2013; 101: 2498-36. [5] A. M. Ionescu and H. Riel. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011; 479: 329-9. [6] A. C. Seabaugh and Q. Zhang. Low voltage tunnel transistors for beyond CMOS logic. Proc. of the IEEE. 2010; 98: 2095-6. [7] International Technology Roadmap for Semiconductor, 2013 edition. [8] Boucart and A. M. Ionescu. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron. 2007; 51: 1500-8. [9] K. K. Bhuwalka, J. Schulze, and I. Eisele. Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn. J. Appl. Phys. 2004; 43: 4073-6. [10] P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch. Complementary tunneling transistor for low power application. Solid-State Electron. 2004; 48: 2281-6. [11] Y. Khatami and K. Banerjee. Scaling analysis of graphene nanoribbon tunnel-FETs. Device Research Conf. 2009; 197-2. [12] M. G. Bardon, H. P. Neves, R. Puers, and C. V. Hoof. Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices. 2010; 57: 827-8. [13] W. Y. Choi and W. Lee. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices. 2010; 57: 2317-3. [14] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl. Phys. Lett.. 2007; 90; 263507-3. [15] L. Liu, D. Mohata, and S. Datta. Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans. Electron Devices. 2012; 59: 902-7. [16] C.-H. Shih and N. D. Chien. Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 2011; 32: 1498-3. [17] C.-H. Shih and N. D. Chien. Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. J. Appl. Phys. 2013; 113: 134507-7. [18] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [19] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken. Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 2007; 91: 053102-3. [20] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo. Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 2008; 103: 104504-5. [21] T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope. IEDM Tech. Dig. 2008; 1-3. [22] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis. Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Trans. Electron Devices. 2009; 56: 2264-6. [23] E. O. Kane. Theory of tunneling. J. Appl. Phys. 1961; 31: 83-9. [24] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer. Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans. Electron Devices. 2012; 59: 292-10. [25] N. D. Chien, L. T. Vinh, N. V. Kien, J.-K. Hsia, T.-S. Kang, and C.-H. Shih. Proper determination of tunnel model parameters for indirect band-to-band tunneling in compressively strained Si1-xGe¬x TFETs. Proc. of Int. Symp. on Next-Generation Electronics. 2013; 67-4. [26] N. D. Chien, C.-H. Shih, L. T. Vinh, N. V. Kien. Quantum confinement effect in strained-Si1-xGex double-gate tunnel field-effect transistors. Proc. Int. Conf. on IC Design and Technology. 2013; 73-4. [27] S. Duenas, H. Castan, H. Garcia, J. Barbolla, K. Kukli, J. Aarik, and A. Aidla. The electrical-interface quality of as-grown atomic-layer-deposited disordered HfO2 on p- and n-type silicon. Semicond. Sci. Tech. 2004; 19: 1-8. [28] N. A. Chowdhury, R. Garg, and D. Misra. Charge trapping and interface characteristics of thermally evaporated HfO2. Appl. Phys. Lett. 2004; 85: 3289-3. [29] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert. Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs. Solid-State Electron. 2013; 83: 50-6. [30] X. Y. Huang, G. F. Jiao, W. Cao, D. Huang, H. Y. Yu, Z. X. Chen, N. Singh, G. Q. Lo, D. L. Kwong, and M.-F. Li. Effect of interface traps and oxide charge on drain current degradation in tunneling field-effect transistors. IEEE Electron Device Lett. 2010; 31: 779-3. [31] G. B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani. Can Interface Traps Suppress TFET Ambipolarity? IEEE Electron Device Lett. 2013; 34: 1557-3. [32] Taur, C. H. Wann, and D. J. Frank. 25 nm CMOS design considerations. IEDM Tech. Dig. 1998; 789-4. |