Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors

The low-bandgap engineering and line-tunneling architecture are the two major techniques to resolve the ON-current issues of tunnel field-effect transistors (TFETs). This paper elucidates the design and modeling of line-tunneling TFETs using low-bandgap materials. Three semiconductors, Ge, InAs, and...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Chun-Hsing Shih, Nguyễn, Đăng Chiến
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: IEEE Publishing 2024
Những chủ đề:
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3291
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-3291
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Line-tunneling
low-bandgap semiconductors
Tunnel field-effect transistors (TFETs)
spellingShingle Line-tunneling
low-bandgap semiconductors
Tunnel field-effect transistors (TFETs)
Chun-Hsing Shih
Nguyễn, Đăng Chiến
Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
description The low-bandgap engineering and line-tunneling architecture are the two major techniques to resolve the ON-current issues of tunnel field-effect transistors (TFETs). This paper elucidates the design and modeling of line-tunneling TFETs using low-bandgap materials. Three semiconductors, Ge, InAs, and InSb, are considered as examples to explore their physical operations and analytical models. 2-D device simulations were performed to examine the on/off characteristics. The appropriate operational voltages depend on the associated bandgap of semiconductors. The gate voltage should be larger than the bandgap voltage (E g /q) to ensure high ON-currents, whereas the drain voltage must be less than the bandgap voltage to control OFF-leakages. Because the minimum tunnel path has a key function in determining the tunneling in line-tunneling TFETs, the tunneling current is reformulated in terms of the minimum tunnel path with friendly compact forms. Two prime design factors, the source concentration and gate-insulator thickness, are examined both analytically and numerically, showing the minimum tunnel path can serve as a useful indicator for low-bandgap line-tunneling TFETs.
format Journal article
author Chun-Hsing Shih
Nguyễn, Đăng Chiến
author_facet Chun-Hsing Shih
Nguyễn, Đăng Chiến
author_sort Chun-Hsing Shih
title Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
title_short Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
title_full Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
title_fullStr Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
title_full_unstemmed Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
title_sort design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors
publisher IEEE Publishing
publishDate 2024
url https://scholar.dlu.edu.vn/handle/123456789/3291
_version_ 1798256978448875520
spelling oai:scholar.dlu.edu.vn:123456789-32912024-03-01T04:12:06Z Design and modeling of line-tunneling field-effect transistors using low bandgap semiconductors Chun-Hsing Shih Nguyễn, Đăng Chiến Line-tunneling low-bandgap semiconductors Tunnel field-effect transistors (TFETs) The low-bandgap engineering and line-tunneling architecture are the two major techniques to resolve the ON-current issues of tunnel field-effect transistors (TFETs). This paper elucidates the design and modeling of line-tunneling TFETs using low-bandgap materials. Three semiconductors, Ge, InAs, and InSb, are considered as examples to explore their physical operations and analytical models. 2-D device simulations were performed to examine the on/off characteristics. The appropriate operational voltages depend on the associated bandgap of semiconductors. The gate voltage should be larger than the bandgap voltage (E g /q) to ensure high ON-currents, whereas the drain voltage must be less than the bandgap voltage to control OFF-leakages. Because the minimum tunnel path has a key function in determining the tunneling in line-tunneling TFETs, the tunneling current is reformulated in terms of the minimum tunnel path with friendly compact forms. Two prime design factors, the source concentration and gate-insulator thickness, are examined both analytically and numerically, showing the minimum tunnel path can serve as a useful indicator for low-bandgap line-tunneling TFETs. 61 6 1907-1913 2024-03-01T04:12:00Z 2024-03-01T04:12:00Z 2014 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3291 10.1109/TED.2014.2316217 en IEEE Transactions on Electron Devices 0018-9383 [1] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, Nov. 2011. [2] Dmitri E. Nikonov and Ian A. Young, “Overview of beyond-CMOS devices and a uniform methodology for their benchmarking,” Proceedings of the IEEE, vol. 101, no. 12, pp. 2498-2533, Dec. 2013. [3] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, “Experimental demonstration of 100nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications,” in IEDM Tech. Dig., 2009, pp. 949-951. [4] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications,” J. Appl. Phys., vol. 103, p. 104504, May 2008. [5] S. J. Koester, I. Lauer, A. Majumdar, J. Cai, J. Sleight, S. Bedell, P. Solomon, S. Laux, L. Chang, S. Koswatta, W. Haensch, P. Tomasini, and S. Thomas, “Are Si-SiGe tunneling field-effect transistors a good idea?” ECS Trans., vol. 33, no. 6, pp. 357-361, 2010. [6] C.-H. Shih and N. D. Chien, “Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1498-1500, Nov. 2011. [7] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, “Strained-Si1-xGex/Si band-to-band tunneling transistors: impact of tunnel junction germanium composition and doping concentration on switching behavior,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2264-2269, Oct. 2009. [8] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical model for a tunnel field-effect transistor,” in Proc. MELECON, 2008, p. 923. [9] C. Hu, “Green transistor as a solution to the IC power crisis,” in Proc. ICSICT, 2008, p. 16. [10] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 32, no. 1, p. 83, Jun. 1961. [11] A. S. Verhulst, D. Leonelli, R. Rooyackers, and G. Groeseneken, “Drain voltage dependent analytical model of tunnel field-effect transistors,” J. Appl. Phys., vol. 110, no. 2, p. 024510, Jul. 2011. [12] G. A. M. Hurkx, “On the modeling of tunneling currents in reverse-biased p-n junctions,” Solid-State Electron., vol. 32, no. 8, pp. 665-668, Aug. 1989. [13] J. Z. Peng, S. Haddad, J. Hsu, J. Chen, S. Longcor, and C. Chang, “Accurate simulation on band-to-band tunneling induced leakage current using a global non-local model,” in Proc. ICSICT, 1995, p. 141. [14] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [15] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Direct and indirect band-to-band tunneling in germanium-based TFETs,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. [16] D. Verreck, A. S. Verhulst, K.-H. Kao, W. G. Vandenberghe, K. D. Meyer, and G. Groeseneken, “Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2128-2134, Jul. 2013. [17] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs,” Solid-State Electron., vol. 83, pp. 50-55, 2013. [18] G. B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, “Can Interface Traps Suppress TFET Ambipolarity?” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1557-1559, Dec. 2013. [19] T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope”, in IEDM Tech. Dig., 2008, pp. 1-3. [20] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates”, Appl. Phys. Lett., vol. 98, no. 11, p. 113105, Mar. 2011. [21] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, W. Magnus, D. Leonelli, G. Groeseneken, and K. D. Meyer, “Optimization of gate-on-source-only tunnel FETs with counter-doped pockets,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2070-2077, Aug. 2012. [22] C.-H. Shih and N. D. Chien, “Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors,” J. Appl. Phys., vol. 115, p. 044501, Jan. 2014. [23] J. L. Moll, “Physics of Semiconductors,” McGraw-Hill, New York, 1970, p. 252 [24] D. Pawlik, B. Romanczyk, P. Thomas, S. Rommel, M. Edirisooriya, R. Contreras-Guerrero, R. Droopad, W.-Y. Loh, M. H. Wong, K. Majumdar, W.-E Wang, P. D. Kirsch, and R. Jammy, “Benchmarking and improving III-V Esaki diode performance with a record 2.2 MA/cm2 peak current density to enhance TFET drive current,” in IEDM Tech. Dig., 2012, pp. 812-814. [25] J.-Y. Li and J. C. Sturm, “The effect of germanium fraction on high-field band-to-band tunneling SiGe junctions in forward and reverse biases,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2479-2484, Aug. 2013. [26] W. Lee and W. Y. Choi, “Influence of inversion layer on tunneling field-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1191-1193, Sep. 2011. [27] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing,” in IEDM Tech. Dig., 2011, pp. 785-788. IEEE Publishing USA