Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors
The energy bandgap is a key factor to determine the tunneling current in tunnel field-effect transistors (TFETs). This paper numerically investigates the effect of quantum confinement in the double-gate TFETs by evaluating the effective energy-band bandgap of the ultra-thin strained-Si1-xGex body....
Đã lưu trong:
Những tác giả chính: | , , , |
---|---|
Định dạng: | Conference paper |
Ngôn ngữ: | English |
Được phát hành: |
IEEE Publishing
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3308 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3308 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
The energy bandgap is a key factor to determine the tunneling current in tunnel field-effect transistors (TFETs). This paper numerically investigates the effect of quantum confinement in the double-gate TFETs by evaluating the effective energy-band bandgap of the ultra-thin strained-Si1-xGex body. The band-offset caused by the quantum confinement effect is rapidly increased with increasing the Ge mole fraction because the body thickness must be decreased to retain the same compressive strain of Si1-xGex. A medium Ge more fraction of strained-Si1-xGex is favorable to optimize the device performance in the strained-Si1-xGex double-gate TFETs. |
format |
Conference paper |
author |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh Nguyen Van Kien |
spellingShingle |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh Nguyen Van Kien Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
author_facet |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh Nguyen Van Kien |
author_sort |
Nguyễn, Đăng Chiến |
title |
Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
title_short |
Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
title_full |
Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
title_fullStr |
Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
title_full_unstemmed |
Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors |
title_sort |
quantum confinement effect in strained-si¬1-xgex double-gate tunnel field-effect transistors |
publisher |
IEEE Publishing |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3308 |
_version_ |
1798256986029031424 |
spelling |
oai:scholar.dlu.edu.vn:123456789-33082024-03-02T10:10:30Z Quantum Confinement Effect in Strained-Si¬1-xGex Double-Gate Tunnel Field-Effect Transistors Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh Nguyen Van Kien The energy bandgap is a key factor to determine the tunneling current in tunnel field-effect transistors (TFETs). This paper numerically investigates the effect of quantum confinement in the double-gate TFETs by evaluating the effective energy-band bandgap of the ultra-thin strained-Si1-xGex body. The band-offset caused by the quantum confinement effect is rapidly increased with increasing the Ge mole fraction because the body thickness must be decreased to retain the same compressive strain of Si1-xGex. A medium Ge more fraction of strained-Si1-xGex is favorable to optimize the device performance in the strained-Si1-xGex double-gate TFETs. 73-76 2024-03-02T10:10:23Z 2024-03-02T10:10:23Z 2013 Conference paper Bài báo đăng trên KYHT quốc tế (có ISBN) 978-1-4673-4740-2 2381-3555 https://scholar.dlu.edu.vn/handle/123456789/3308 10.1109/ICICDT.2013.6563306 en International Conference on IC Design and Technology (ICICDT) [1] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. [2] C. Hu, “Green transistor as a solution to the IC power crisis,” in the 9th International Conference on Solid-State and Integrated-Ciucuit Technology (ICSICT), 2008, pp. 16-20. [3] K. Boucart and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid State Electron., vol. 51, no. 11/12, pp. 1500-1507, Nov./Dec. 2007. [4] C.-H. Shih and N. D. Chien, “Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction,” IEEE Electron Device Lett., vol. 32, no.11, pp. 1498-1500, Nov. 2011. [5] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 31, no. 1, pp. 83-91, 1961. [6] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, “Strained-Si1-xGex/Si Band-to-Band Tunneling Transistors: Impact of Tunnel Junction Germanium Composition and Doping Concentration on Switching Behavior,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2264-2269, Sep. 2009. [7] T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope”, in IEDM Tech. Dig., 2008, pp. 1-3. [8] Q. Zhang, W. Zhao, and S. A. Seabaugh, “Low-subthreshold swing tunnel transistors”, IEEE Electron Device Lett., vol. 27, no. 4, pp. 297-300, Apr. 2006. [9] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. D. Gendt, M. M. Heyns, and G. Groeseneken, “Silicide Engineering to Boost Si Tunnel Transistor Drive Current,” Jpn. J. Appl. Phys., vol. 50, no. 4, pp. 04DC05-4, Apr. 2011. [10] E.-H. Toh, G. H. Wang, L. Chan, D. Sylvester, C.-H. Heng, G. S. Samudra, and Y.-C. Yeo, “Device design and scalability of a double-gate tunneling field-effect transistor with silicon–germanium source,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2593-2597, Apr. 2008. [11] C.-H. Shih and N. D. Chien, “Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions,” J. Appl. Phys., vol. 113, no.13, p. 134507, Apr. 2013. [12] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, Aug. 1996. [13] C.-H. Shih and N. D. Chien, “Operation and Design of Extremely Short-Channel Tunnel Field-Effect Transistors with Graded Silicon-Germanium Heterojunctions,” submitted in J. Appl. Phys. [14] K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-κ gate dielectric”, IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1725-1733, Jul. 2007. [15] D. Kim, T. Krishnamohan, L. Smith, H.-S. P. Wong, and K. C. Saraswat, “Band to Band Tunneling Study in High Mobility Materials: III-V, Si, Ge and strained SiGe,” in the 65th Annual Device Research Conference (DRC), 2007, pp. 57-58. [16] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization,” Appl. Phys. Lett., vol. 90, no. 26, p. 263507, Jun. 2007. [17] S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, “Heterojunction bipolar transistors using Si-Ge alloys,” IEEE. Trans. Electron Devices, vol. 36, no. 10, pp. 2043–2064, Oct. 1989. [18] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, Aug. 1996. [19] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [20] N. D. Chien, L. T. Vinh, N. V. Kien, J.-K. Hsia, T.-S. Kang, and C.-H. Shih, “Proper determination of tunnel model parameters for indirect band-to-band tunneling in compressively strained Si1-xGex TFETs,” in the 2nd International Symposium on Next-Generation Electronics (ISNE), Feb. 2013. IEEE Publishing USA |