Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions
The heterojunction technique has recently been considered as an effective approach to simultaneously achieve a high on-current and low ambipolar off-leakage in tunnel field-effect transistors (TFETs). In this paper, we propose the various configurations of abrupt and graded Si/SiGe heterojunctions f...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/2079 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2079 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Short-channel effect silicon-germanium heterojunction technique sub-10-nm transistor tunnel field-effect transistor (TFET) |
spellingShingle |
Short-channel effect silicon-germanium heterojunction technique sub-10-nm transistor tunnel field-effect transistor (TFET) Nguyễn, Đăng Chiến Chun-Hsing Shih Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
description |
The heterojunction technique has recently been considered as an effective approach to simultaneously achieve a high on-current and low ambipolar off-leakage in tunnel field-effect transistors (TFETs). In this paper, we propose the various configurations of abrupt and graded Si/SiGe heterojunctions for TFETs and investigate their short-channel effects by using two-dimensional simulations. It is shown that the semiconductor bandgap has to be properly considered together with the drain-induced barrier thinning in studying short-channel effects because scaling down the bandgap considerably deteriorates short-channel effects in TFETs. Among the basic configurations of Si/SiGe heterojunctions, the slantingly graded Si/SiGe heterostructure is most excellent in optimizing the electrical characteristics of the extremely scaled TFETs without short-channel effects. The slantingly graded Si/SiGe TFET with superior short-channel performance exhibits a potential device for low power and high packaging density integrated circuits. |
format |
Journal article |
author |
Nguyễn, Đăng Chiến Chun-Hsing Shih |
author_facet |
Nguyễn, Đăng Chiến Chun-Hsing Shih |
author_sort |
Nguyễn, Đăng Chiến |
title |
Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
title_short |
Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
title_full |
Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
title_fullStr |
Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
title_full_unstemmed |
Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions |
title_sort |
short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded si/sige heterojunctions |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/2079 |
_version_ |
1785973036916146176 |
spelling |
oai:scholar.dlu.edu.vn:123456789-20792023-12-13T04:19:18Z Short-channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions Nguyễn, Đăng Chiến Chun-Hsing Shih Short-channel effect silicon-germanium heterojunction technique sub-10-nm transistor tunnel field-effect transistor (TFET) The heterojunction technique has recently been considered as an effective approach to simultaneously achieve a high on-current and low ambipolar off-leakage in tunnel field-effect transistors (TFETs). In this paper, we propose the various configurations of abrupt and graded Si/SiGe heterojunctions for TFETs and investigate their short-channel effects by using two-dimensional simulations. It is shown that the semiconductor bandgap has to be properly considered together with the drain-induced barrier thinning in studying short-channel effects because scaling down the bandgap considerably deteriorates short-channel effects in TFETs. Among the basic configurations of Si/SiGe heterojunctions, the slantingly graded Si/SiGe heterostructure is most excellent in optimizing the electrical characteristics of the extremely scaled TFETs without short-channel effects. The slantingly graded Si/SiGe TFET with superior short-channel performance exhibits a potential device for low power and high packaging density integrated circuits. 100 857-866 2023-04-28T10:05:50Z 2023-04-28T10:05:50Z 2016 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2079 10.1016/j.spmi.2016.10.057 en Vietnam National Foundation for Science and Technology Development (NAFOSTED) Vietnam Ministry of Education and Training (MOET) Superlattices and Microstructures 2773-0131 103.02-2015.58 B2016-03 [1] W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec, IEEE Electron Device Lett 28 (2007) 743-745. [2] H. Fuketa, K. Yoshioka, K. Fukuda, T. Mori, H. Ota, M. Takamiya, T. Sakurai, Design guidelines to achieve minimum energy operation for ultra low voltage tunneling FET logic circuits, Jpn J Appl Phys 54 (2015) 04DC04. [3] L. Knoll, M. Schmidt, Q.T. Zhao, S. Trellenkamp, A. Schafer, K.K. Bourdelle, S. Mantl, Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped NiSi2 tunnel junctions, Solid-State Electron 84 (2013) 211-215. [4] K. Jeon et al., Si tunnel transistors with a novel silicided source and 46mV/dec swing, VLSI Symp. Tech. Dig., 2010, pp. 121-122. [5] G.B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high ON-current, IEEE Trans Electron Devices 61 (2014) 776-784. [6] W. Wang, P-F Wang, C.-M. Zhang, X. Lin, X.-Y. Liu, Q.-Q. Sun, P. Zhou, and D.W. Zhang, Design of U-shape channel tunnel FETs with SiGe source regions, IEEE Trans Electron Devices 61 (2014) 193-197. [7] E.O. Kane, Theory of tunneling, J Appl Phys 31 (1961) 83-91. [8] E.-H. Toh, G.-H. Wang, Y.-C. Yeo, Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction, Appl Phys Lett 91 (2007) 243505. [9] T Krishnamohan, K Donghyun, S Raghunathan, K Saraswat, Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope, IEDM Tech Dig, 2008, pp. 1-3. [10] S.H. Kim, H. Kam, C. Hu, T.-J.K. Liu, Germanium-source tunnel field effect transistors with record high ION/IOFF, VLSI Symp Tech Dig, 2009, pp. 178-179. [11] M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions, IEEE Trans Electron Devices 57 (2010) 827-834. [12] J. Wu, J. Min, Y. Taur, Short-channel effects in tunnel FETs, IEEE Trans Electron Devices 62 (2015) 3019-3024. [13] L. Liu, D. Mohata, S. Datta, Scaling length theory of double-gate interband tunnel field-effect transistors, IEEE Trans Electron Devices 59 (2012) 902-908. [14] H. Ilatikhameneh, G. Klimeck, R. Rahman, Can homojunction tunnel FETs scale below 10 nm?, IEEE Electron Device Lett 37 (2016) 115-118. [15] N.D. Chien, C.-H. Shih, Short-channel effect and device design of extremely scaled tunnel field-effect transistors, Microelectron Reliab 55 (2015) 31-37. [16] Y.J. Yoon, H.R. Eun, J.H. Seo, H.-S. Kang, S.M. Lee, J. Lee, S. Cho, H.-S. Tae, J.-H. Lee, I.M. Kang, Short-channel tunneling field-Effect Transistor with drain-overlap and dual-metal gate structure for low-power and high-speed operations, J. Nanosci. Nanotechnol. 15 (2015) 7430-7435. [17] C.-H. Shih, N.D. Chien, Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction, IEEE Electron Device Lett 32 (2011) 1498-1500. [18] Synopsys MEDICI User’s Manual. Synopsys Inc. CA: Mountain View; 2010. [19] H. Ilatikhameneh, T.A. Ameen, G. Klimeck, J. Appenzeller, R. Rahman, Dielectric engineered tunnel field-effect transistor, IEEE Electron Device Lett 36 (2015) 1097-1100. [20] C.-H. Shih, N.D. Chien, Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions, J Appl Phys 113 (2013) 134507. [21] P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, W. Hansch, Complementary tunneling transistor for low power application, Solid-State Electron 48 (2004) 2281-2286. [22] H.G. Virani, R.B. Rao, A. Kottantharayil, Investigation of novel Si/SiGe heterostructures and gate induced source tunneling for improvement of p-channel tunnel field-effect transistors, Jpn J Appl Phys 49 (2010) 04DC12. [23] N.D. Chien, C.-H. Shih, L.T. Vinh, Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach, J Appl Phys 114 (2013) 094507 [Erratum. 114: 189901]. [24] E.-H. Toh, G.H. Wang, L. Chan, G. Samudra, Y.-C. Yeo, Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization, Appl Phys Lett 90 (2007) 263507. [25] E.-H. Toh, G.H. Wang, G. Samudra, Y.-C. Yeo, Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications, J Appl Phys 103 (2008) 104504. [26] O.M. Nayfeh, J.L. Hoyt, D.A. Antoniadis, Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior, IEEE Trans Electron Devices 56 (2009) 2264-2269. [27] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, C. Huyghebaert, Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs, Solid-State Electron 83 (2013) 50-55. [28] G.B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Can interface traps suppress TFET ambipolarity?, IEEE Electron Device Lett 34 (2013) 1557-1559. [29] K. Kim, Y.H. Lee, Temperature-dependent critical layer thickness for strained-layer heterostructures, Appl Phys Lett 67 (1995) 2212-2214. [30] C.L. Royer, A. Villalon, L. Hutin, S. Martinie, P. Nguyen, S. Barraud, F. Glowacki, F. Allain, N. Bernier, S. Cristoloveanu, M. Vinet, Fabrication and electrical characterizations of SGOI tunnel FETs with gate length down to 50 nm, Solid-State Electron 115 (2016) 167-172. [31] K.L. Wang, R.P.G. Karunasiri, SiGe/Si electronics and optoelectronics, J Vac Sci Technol B 11 (1993) 1159-1167. [32] K.-H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Soree, G. Groeseneken, K.D. Meyer, Direct and indirect band-to-band tunneling in germanium-based TFETs, IEEE Trans Electron Devices 59 (2012) 292-301. [33] N.D. Chien, C.-H. Shih, L.T. Vinh, N.V. Kien, Quantum confinement effect in strained-Si¬1-xGex double-gate tunnel field-Effect transistors, Proc IEEE Int Conf IC Design and Tech, 2013, pp. 73-76. [34] M.H. Lee, J.-C. Lin, C.-Y. Kao, Hetero-tunnel field-effect-transistors with epitaxially grown germanium on silicon, IEEE Trans Electron Devices 60 (2013) 2423-2427. |