Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors
Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
AIP Publishing
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3292 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3292 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:123456789-32922024-03-01T04:26:16Z Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors Chun-Hsing Shih Nguyễn, Đăng Chiến Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors. 115 4 044501 2024-03-01T04:26:12Z 2024-03-01T04:26:12Z 2014 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3292 10.1063/1.4862335 en Journal of Applied Physics 0021-8979 1. A. M. Ionescu and H. Riel, Nature 479, 329 (2011). 2. A. C. Seabaugh and Q. Zhang, Proceedings of the IEEE 98, 2095 (2010). 3. C. Hu, in 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT, 2008), p. 16. 4. P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, Solid-State Electron. 48, 2281 (2004). 5. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, IEEE Electron Device Lett. 28, 743 (2007). 6. E. O. Kane, J. Appl. Phys. 32, 83 (1961). 7. T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, Tech. Dig.- Int. Electron Devices Meet. 2008, 1. 8. O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, IEEE Trans. Electron Devices 56, 2264 (2009). 9. C.-H. Shih and N. D. Chien, IEEE Electron Device Lett. 32, 1498 (2011). 10. M. Luisier and G. Klimeck, IEEE Electron Device Lett. 30, 602 (2009). 11. A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, Appl. Phys. Lett. 98, 113105 (2011). 12. S. S. Sylvia, M. A. Khayer, K. Alam, and R. K. Lake, IEEE Trans. Electron Devices 59, 2996 (2012). 13. W. M. Reddick and G. A. J. Amaratunga, Appl. Phys. Lett. 67, 494 (1995). 14. Synopsys Taurus MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. 15. Synopsys Sentaurus Device User’s Manual, Synopsys Inc., Mountain View, CA, 2010. 16. W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, in Proceedings of International Conference on Simulation of Semiconductor Processes and Devices (SISPAD, 2008), p. 137. 17. K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, IEEE Trans. Electron Devices 59, 292 (2012). 18. G. A. M. Hurkx, Solid-State Electron. 32, 665 (1989). 19. A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, J. Appl. Phys. 107, 024518 (2010). 20. J. L. Moll, “Physics of Semiconductors,” McGraw-Hill, New York, 1970, p. 252. 21. K. Boucart and A. M. Ionescu, Solid-State Electron. 52, 1318 (2008). 22. D. Pawlik, B. Romanczyk, P. Thomas, S. Rommel, M. Edirisooriya, R. Contreras-Guerrero, R. Droopad, W.-Y. Loh, M. H. Wong, K. Majumdar, W.-E Wang, P. D. Kirsch, and R. Jammy, in International Electron Devices Meeting (IEDM, 2012), p. 812. AIP Publishing USA |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors. |
format |
Journal article |
author |
Chun-Hsing Shih Nguyễn, Đăng Chiến |
spellingShingle |
Chun-Hsing Shih Nguyễn, Đăng Chiến Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
author_facet |
Chun-Hsing Shih Nguyễn, Đăng Chiến |
author_sort |
Chun-Hsing Shih |
title |
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
title_short |
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
title_full |
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
title_fullStr |
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
title_full_unstemmed |
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
title_sort |
physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors |
publisher |
AIP Publishing |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3292 |
_version_ |
1798256978925977600 |