Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach

The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyễn, Đăng Chiến, Chun-Hsing Shih, Luu The Vinh
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: AIP Publishing 2024
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3293
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well as generalizes the proposed graded heterojunction approach in both n-type and p-type TFETs. It is shown that the presence of thermal emission barriers formed by abrupt band offsets is the physical reason of the on-current lowering observed in abrupt heterojunction TFETs. By employing graded heterojunctions in TFETs, the thermal emission barriers for electrons and holes are completely eliminated to narrow the tunnel widths in n-type and p-type TFETs, respectively. With the significant improvement in on-current, this novel approach of graded heterojunctions provides an effective technique for enhancing the drive current in heterostructure-based TFET devices.