Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach
The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well...
Đã lưu trong:
Những tác giả chính: | , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
AIP Publishing
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3293 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3293 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:123456789-32932024-03-01T07:09:07Z Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well as generalizes the proposed graded heterojunction approach in both n-type and p-type TFETs. It is shown that the presence of thermal emission barriers formed by abrupt band offsets is the physical reason of the on-current lowering observed in abrupt heterojunction TFETs. By employing graded heterojunctions in TFETs, the thermal emission barriers for electrons and holes are completely eliminated to narrow the tunnel widths in n-type and p-type TFETs, respectively. With the significant improvement in on-current, this novel approach of graded heterojunctions provides an effective technique for enhancing the drive current in heterostructure-based TFET devices. 114 9 094507 2024-03-01T07:09:05Z 2024-03-01T07:09:05Z 2013 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3293 10.1063/1.4820011 en Journal of Applied Physics 0021-8979 1. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, IEEE Electron Device Lett. 28, 743 (2007). 2. A. M. Ionescu and H. Riel, Nature 479, 329 (2011). 3. W. M. Reddick and G. A. J. Amaratunga, Appl. Phys. Lett. 67, 494 (1995). 4. P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, Solid-State Electron. 48, 2281 (2004). 5. K. Boucart and A. M. Ionescu, Solid-State Electron. 51, 1500 (2007). 6. C.-H. Shih and N. D. Chien, IEEE Electron Device Lett. 32, 1498 (2011). 7. P.-F. Wang, Th. Nirschl, D. Schmitt-Landsiedel, W. Hansch, Solid-State Electron. 47, 1187 (2003). 8. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, Appl. Phys. Lett. 91, 053102 (2007). 9. E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, J. Appl. Phys. 103, 104504 (2008). 10. O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, IEEE Trans. Electron Devices 56, 2264 (2009). 11. S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, and S. Datta, IEEE Electron Device Lett. 31, 564 (2010). 12. M. Luisier and G. Klimeck, in Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, 2009, p. 1. 13. H. G. Virani, R. B. Rao, and A. Kottantharayil, Jpn. J. Appl. Phys. 49, 04DC12 (2010). 14. N. D. Chien, L. T. Vinh, N. V. Kien, J.-K. Hsia, T.-S. Kang, and C.-H. Shih, in Proceedings of International Symposium on Next-Generation Electronics, 2013, p. 67. 15. C.-H. Shih and N. D. Chien, J. Appl. Phys. 113, 134507 (2013). 16. Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. 17. E.-H. Toh, G. H. Wang, L. Chen, G. Samudra, and Y.-C. Yeo, Appl. Phys. Lett. 90, 263507 (2007). 18. E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, Appl. Phys. Lett. 91, 243505 (2007). 19. E. O. Kane, J. Appl. Phys. 32, 83 (1961). 20. M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996). 21. M. Luisier and G. Klimeck, J. Appl. Phys. 107, 084507 (2010). 22. N. D. Chien, C.-H. Shih, L. T. Vinh, N. V. Kien, in Proceedings of International Conference on IC Design and Technology, 2013, p. 73. 23. D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. D. Gendt, M. M. Heyns, and G. Groeseneken, Jpn. J. Appl. Phys. 50, 04DC05 (2011). 24. T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, in Technical Digest of International Electron Devices Meeting, 2008, p. 1. AIP Publishing USA |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well as generalizes the proposed graded heterojunction approach in both n-type and p-type TFETs. It is shown that the presence of thermal emission barriers formed by abrupt band offsets is the physical reason of the on-current lowering observed in abrupt heterojunction TFETs. By employing graded heterojunctions in TFETs, the thermal emission barriers for electrons and holes are completely eliminated to narrow the tunnel widths in n-type and p-type TFETs, respectively. With the significant improvement in on-current, this novel approach of graded heterojunctions provides an effective technique for enhancing the drive current in heterostructure-based TFET devices. |
format |
Journal article |
author |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh |
spellingShingle |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
author_facet |
Nguyễn, Đăng Chiến Chun-Hsing Shih Luu The Vinh |
author_sort |
Nguyễn, Đăng Chiến |
title |
Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
title_short |
Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
title_full |
Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
title_fullStr |
Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
title_full_unstemmed |
Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
title_sort |
drive current enhancement in tunnel field-effect transistors by graded heterojunction approach |
publisher |
AIP Publishing |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3293 |
_version_ |
1798256979578191872 |