Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions
Using graded silicon-germanium heterojunctions, the green tunnel field-effect transistor (TFET) can be scaled down into sub-10 nm regimes without short-channel effects. This work elucidates numerically the physical operation and device design of extremely short-channel TFETs with graded silicon-germ...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
AIP Publishing
2024
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3295 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-3295 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
Using graded silicon-germanium heterojunctions, the green tunnel field-effect transistor (TFET) can be scaled down into sub-10 nm regimes without short-channel effects. This work elucidates numerically the physical operation and device design of extremely short-channel TFETs with graded silicon-germanium heterojunctions for future low-power and high-performance applications. Critical device factors, such as the drain profile and bandgap engineering, were examined to generate favorable characteristics in the on-current, on-off switching, and off-leakage of very short TFETs. A mildly doped drain with a pure Ge source is preferred in designing the graded TFETs to optimize a desirable green transistor for low-power integrated circuits. |
format |
Journal article |
author |
Chun-Hsing Shih Nguyễn, Đăng Chiến |
spellingShingle |
Chun-Hsing Shih Nguyễn, Đăng Chiến Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
author_facet |
Chun-Hsing Shih Nguyễn, Đăng Chiến |
author_sort |
Chun-Hsing Shih |
title |
Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
title_short |
Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
title_full |
Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
title_fullStr |
Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
title_full_unstemmed |
Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
title_sort |
physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions |
publisher |
AIP Publishing |
publishDate |
2024 |
url |
https://scholar.dlu.edu.vn/handle/123456789/3295 |
_version_ |
1798256980574339072 |
spelling |
oai:scholar.dlu.edu.vn:123456789-32952024-04-10T10:35:41Z Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions Chun-Hsing Shih Nguyễn, Đăng Chiến Using graded silicon-germanium heterojunctions, the green tunnel field-effect transistor (TFET) can be scaled down into sub-10 nm regimes without short-channel effects. This work elucidates numerically the physical operation and device design of extremely short-channel TFETs with graded silicon-germanium heterojunctions for future low-power and high-performance applications. Critical device factors, such as the drain profile and bandgap engineering, were examined to generate favorable characteristics in the on-current, on-off switching, and off-leakage of very short TFETs. A mildly doped drain with a pure Ge source is preferred in designing the graded TFETs to optimize a desirable green transistor for low-power integrated circuits. 113 13 134507 2024-03-01T07:25:10Z 2024-03-01T07:25:10Z 2013 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/3295 10.1063/1.4795777 en Journal of Applied Physics 0021-8979 1. P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, Solid-State Electron. 48, 2281 (2004). 2. Q. Zhang, W. Zhao, and S. A. Seabaugh, IEEE Electron Device Lett. 27, 297 (2006). 3. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, IEEE Electron Device Lett. 28, 743 (2007). 4. E.-H. Toh, G. H. Wang, L. Chan, D. Sylvester, C.-H. Heng, G. S. Samudra, and Y.-C. Yeo, Jpn. J. Appl. Phys. 47, 2593 (2008). 5. C. Hu, Proc. Int. Conf. Solid-State and Integrated-Circuit Tech. 2008, 16. 6. J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, Proc. Asia and South Pacific Design Automation Conf. 2010, 181. 7. K. Boucart and A. M. Ionescu, Solid State Electron. 51, 1500 (2007). 8. E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960). 9. K. Bhuwalka, M. Born, M. Schindler, M. Schmidt, T. Sulima and I. Eisele, Jpn. J. Appl. Phys. 45, 3106 (2006). 10. S. Mookerjea and S. Datta, Tech. Dig. Device Research Conf. 2008, 47. 11. Q. Zhang, S. Sutar, T. Kosel, and A. Seabaugh, Solid-State Electron. 53, 30 (2009). 12. O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, IEEE Trans. Electron Devices 56, 2264 (2009). 13. A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, Appl. Phys. Lett. 98, 113105 (2011). 14. K. Boucart and A. M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007). 15. T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, Tech. Dig. Int. Electron Devices Meet. 2008, 1. 16. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, Appl. Phys. Lett. 91, 053102 (2007). 17. A. Chattopadhyay and A. Mallik, IEEE Trans. Electron Devices 58, 677 (2011). 18. N. Cui, R. Liang, J. Xu, Appl. Phys. Lett. 98, 142105 (2011). 19. C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, Appl. Phys. Lett. 96, 122104 (2010). 20. E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, J. Appl. Phys. 103, 104504 (2008). 21. C.-H. Shih and N. D. Chien, IEEE Electron Device Lett., 32, 1498 (2011). 22. H. G. Virani, R. B. Rao, and A. Kottantharayil, Jpn. J. Appl. Phys. 49, 04DC12 (2010). 23. Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. 24. K. Kim and Y. H. Lee, Appl. Phys. Lett. 67, 2212 (1995). 25. N. Patel, A. Ramesha, and S. Mahapatra, Microelectron. J. 39, 1671 (2008). 26. M. Schmidt, R. A. Minamisara, S. Richter, R. Luptak, J.-M. Hartmann, D. Buca, Q. T. Zhao, and S. Mantl, Solid-State Electron. 71, 42 (2012). 27. M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996). 28. K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, IEEE Trans. Electron Devices 59, 292 (2012). 29. K. Sawano, K. Toyama, R. Masutomi, T. Okamoto, K. Arimoto, K. Nakagawa, N. Usami, and Y. Shiraki, Microelectron. Eng. 88, 465 (2011). 30. D. Kim, T. Krishnamohan, L. Smith, H.-S. P. Wong, and K. C. Saraswat, Proc. Device Research Conf. 2007, 57. 31. D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. D. Gendt, M. M. Heyns, and G. Groeseneken, Jpn. J. Appl. Phys., 50, 04DC05 (2011). 32. C. Kampen, A. Burenkov, and J. Lorenz, Proc. Euro. Solid-State Device Research Conf. 2011, 139. 33. S. Masahara, T. Matsukawa, K. Ishii, L. Yongxun, H. Tanoue, K. Sakamoto, T. Sekigawa, H. Yamauchi, S. Kanemaru, and E. Suzuki, Proc. the Int. Electron Devices Meet. 2002, 949. 34. M. Yang, Ph.D. Thesis, Princeton University 2000, 32. 35. A. Vandooren, D. Leonellia, R. Rooyackers, K. Arstila, G. Groeseneken, and C. Huyghebaerta, Solid-State Electron. 72, 82 (2012). AIP Publishing USA |