Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs

Tunnel field-effect transistor (TFET) has served as one of the most attractive candidates for use in future low-power integrated circuits. To explore the current-voltage characteristics of TFET devices, the Kane’s tunnel model has been widely used in numerical simulations and physical models to pred...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyễn, Đăng Chiến, Luu The Vinh, Nguyen Van Kien, Jui-Kai Hsia, Ting-Shiuan Kang, Chun-Hsing Shih
Định dạng: Conference paper
Ngôn ngữ:English
Được phát hành: IEEE Publishing 2024
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/3306
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-3306
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
description Tunnel field-effect transistor (TFET) has served as one of the most attractive candidates for use in future low-power integrated circuits. To explore the current-voltage characteristics of TFET devices, the Kane’s tunnel model has been widely used in numerical simulations and physical models to predict the tunneling current produced in the TFETs. This study examines the proper calculations of Kane’s model parameters appropriate for the indirect band-to-band tunneling generated in compressively strained Si1-xGex channel on Si-substrate. The calculated parameters were verified with the measured results from experimental TFETs. Good agreements are confirmed between the numerical and measured data without any fitting factors.
format Conference paper
author Nguyễn, Đăng Chiến
Luu The Vinh
Nguyen Van Kien
Jui-Kai Hsia
Ting-Shiuan Kang
Chun-Hsing Shih
spellingShingle Nguyễn, Đăng Chiến
Luu The Vinh
Nguyen Van Kien
Jui-Kai Hsia
Ting-Shiuan Kang
Chun-Hsing Shih
Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
author_facet Nguyễn, Đăng Chiến
Luu The Vinh
Nguyen Van Kien
Jui-Kai Hsia
Ting-Shiuan Kang
Chun-Hsing Shih
author_sort Nguyễn, Đăng Chiến
title Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
title_short Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
title_full Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
title_fullStr Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
title_full_unstemmed Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs
title_sort proper determination of tunnel model parameters for indirect band-to-band tunneling in compressively strained si1-xgex tfets
publisher IEEE Publishing
publishDate 2024
url https://scholar.dlu.edu.vn/handle/123456789/3306
_version_ 1798256985170247680
spelling oai:scholar.dlu.edu.vn:123456789-33062024-03-02T09:58:01Z Proper Determination of Tunnel Model Parameters for Indirect Band-to-Band Tunneling in Compressively Strained Si1-xGex TFETs Nguyễn, Đăng Chiến Luu The Vinh Nguyen Van Kien Jui-Kai Hsia Ting-Shiuan Kang Chun-Hsing Shih Tunnel field-effect transistor (TFET) has served as one of the most attractive candidates for use in future low-power integrated circuits. To explore the current-voltage characteristics of TFET devices, the Kane’s tunnel model has been widely used in numerical simulations and physical models to predict the tunneling current produced in the TFETs. This study examines the proper calculations of Kane’s model parameters appropriate for the indirect band-to-band tunneling generated in compressively strained Si1-xGex channel on Si-substrate. The calculated parameters were verified with the measured results from experimental TFETs. Good agreements are confirmed between the numerical and measured data without any fitting factors. 67-70 2024-03-02T09:57:58Z 2024-03-02T09:57:58Z 2013 Conference paper Bài báo đăng trên KYHT quốc tế (có ISBN) 978-1-4673-3036-7 https://scholar.dlu.edu.vn/handle/123456789/3306 10.1109/ISNE.2013.6512282 en IEEE International Symposium on Next-Generation Electronics (ISNE) [1] P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, “Complementary tunneling transistor for low power application,” Solid-State Electron., vol. 48, no. 12, pp. 2281-2286, Dec. 2004. [2] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. [3] E.-H. Toh, G. H. Wang, L. Chan, D. Sylvester, C.-H. Heng, G. S. Samudra, and Y.-C. Yeo, “Device design and scalability of a double-gate tunneling field-effect transistor with silicon–germanium source,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2593-2597, Apr. 2008. [4] C.-H. Shih and N. D. Chien, “Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction,” IEEE Electron Device Lett., vol. 32, no.11, pp. 1498-1500, Nov. 2011. [5] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 31, no. 1, pp. 83-91, 1961. [6] W. M. Reddik and G. A. J. Amaratunga, “Gate controlled surface tunneling transistor,” in Proc. High Speed Semiconductor Dev. Circuits, Aug. 7-9, 1995, pp. 490-497. [7] K. K. Bhuwalka, J. Schulze, and I. Eisele, “A simulation approach to optimize the electrical parameters of a vertical tunnel FET;” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1541-1547, Jul. 2005. [8] Y. Khatami and K. Banerjee, “Scaling analysis of Graphene Nanoribbon tunnel-FETs,” in Device Research Conference (DRC), 2009, pp. 197-198. [9] M. Luisier and G. Klimeck, “Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling,” J. Appl. Phys., vol. 107, no. 8, pp. 084507-084507-6, Apr. 2010. [10] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [11] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, “Strained-Si1-xGex/Si Band-to-Band Tunneling Transistors: Impact of Tunnel Junction Germanium Composition and Doping Concentration on Switching Behavior,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2264-2269, Sep. 2009. [12] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. [13] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, Aug. 1996. [14] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. New York: Wiley, 2001. [15] C. Rivas, R. Lake, G. Klimeck, W. R. Frensley, M. V. Fischetti, P. E. Thompson, S. L. Rommel, and P. R. Berger, “Full-band simulation of indirect phonon-assisted tunneling in a silicon tunnel diode with delta-doped contacts,” Appl. Phys. Lett., vol. 78, no. 6, pp. 814-816, Feb. 2001. [16] M. V. Fischetti, T. P. O’ Regan, S. Narayanan, C. Sachs, S. Jin, J. Kim, and Y. Zhang, “Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2116-2136, Sep. 2007. [17] R. A. Logan, J. M. Rowell, and F. A. Trumbore, “Phonon spectra of Ge-Si alloys,” Phys. Rev., vol. 136, no. 6A, pp. 1751-1755, Dec. 1964. [18] A. G. Chynoweth, R. A. Logan, and D. E. Thomas, “Phonon-assisted tunneling in silicon and germanium Esaki junctions,” Phys. Rev., vol. 125, no. 3, pp. 877-881, Feb. 1962. [19] J.-L. Ma, H.-M. Zhang, X.-Y. Wang, Q. Wei, G.-Y. Wang, and X.-B. Xu, “Valence band structure and hole effecitve mass of uniaxial stressed germanium,” J. Comput. Electron., vol. 10, no. 4, pp. 388-393, Oct. 2011. [20] X. Wang, D. L. Kencke, K. C. Liu, L. F. Register, and S. K. Banerjee, “Band alignments in sidewall strained Si/strained SiGe heterostructures,” Solid-State Electron., vol. 46, no. 12, pp. 2021-2025, Dec. 2002. [21] A. Rahman, M. S. Lundstrom, and A. W. Ghosh, “Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers,” J. Appl. Phys., vol. 97, no. 5, pp. 053702-053702-12, 2005. [22] W.-Y. Loh, K. Jeon, C. Y. Kang, J. Oh, T.-J. K. Liu, H. H. Tseng, W. Xiong, P. Majhi, R. Jammy, and C. Hu, “Highly scaled (Lg 56 nm) gate-last Si tunnel field-effect transistors with ION 100 μAμm,” Solid-State Electron., vol. 65-66, pp. 22-27, Nov.-Dec. 2011. [23] C. Kampen, A. Burenkov, and J. Lorenz, “Challenges in TCAD simulations of tunneling field effect transistors,” in Proceedings of the European Solid-state Device Research Conference (ESSDERC), 2011, pp. 139-142. IEEE Publishing USA