Design optimization of extremely short-channel graded Si/SiGe heterojunction tunnel field-effect transistors for low power applications
This study investigates, by a two-dimensional simulation, the design optimization of a proposed 8 nm tunnel field-effect transistor (TFET) for low standby power (LSTP) applications utilizing graded Si/SiGe heterojunction with device parameters based on the ITRS specifications. The source Ge mole fra...
Đã lưu trong:
Những tác giả chính: | , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Publishing House for Science and Technology, Vietnam Academy of Science and Technology
2024
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/3294 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Tóm tắt: | This study investigates, by a two-dimensional simulation, the design optimization of a proposed 8 nm tunnel field-effect transistor (TFET) for low standby power (LSTP) applications utilizing graded Si/SiGe heterojunction with device parameters based on the ITRS specifications. The source Ge mole fraction should be designed approximately 0.8 because using lower Ge fractions causes severe short-channel effects while with higher values does not significantly improve the device performance but may create big difficulties in fabrication. Based on simultaneously optimizing the subthreshold swing, on- and off-currents, optimum values of source doping, drain doping and length of the proposed device are approximately 1020 cm-3, 1018 cm-3, and 10 nm, respectively. The 8 nm graded Si/SiGe TFET with optimized device parameters demonstrates high on-current of 360 μA/μm, low off-current of 0.5 pA/μm, low threshold voltage of 85 mV and very steep subthreshold swing of sub-10 mV/decade. The designed TFET with graded Si/SiGe heterojunction exhibits an excellent performance and makes it an attractive candidate for future LSTP technologies because of its reality to be fabricated with existing FET and SiGe growth techniques. |
---|